

SVENSK STANDARD SS-EN 55032

FastställdUtgåvaSidaAnsvarig kommitté2012-10-1011 (1+82)SEK TK EMC

© Copyright SEK. Reproduction in any form without permission is prohibited.

Multimediautrustning – EMC-fordringar – Emission

Electromagnetic compatibility of multimedia equipment – Emission requirements

Som svensk standard gäller europastandarden EN 55032:2012. Den svenska standarden innehåller den officiella engelska språkversionen av EN 55032:2012.

Nationellt förord

Europastandarden EN 55032:2012

består av:

- europastandardens ikraftsättningsdokument, utarbetat inom CENELEC
- IEC 32, First edition, 2012^{*)} Electromagnetic compatibility of multimedia equipment Emission requirements

utarbetad inom International Electrotechnical Commission, IEC.

*) Corrigendum, March 2012 och August 2012 till CISPR 32:2012, är inarbetade i standarden.

ICS 33.100.10

Denna standard är fastställd av SEK Svensk Elstandard, som också kan lämna upplysningar om **sakinnehållet** i standarden. Postadress: SEK, Box 1284, 164 29 KISTA *Telefon*: 08 - 444 14 00. *Telefax*: 08 - 444 14 30 *E-post*: sek@elstandard.se. *Internet*: www.elstandard.se

Standarder underlättar utvecklingen och höjer elsäkerheten

Det finns många fördelar med att ha gemensamma tekniska regler för bl a säkerhet, prestanda, dokumentation, utförande och skötsel av elprodukter, elanläggningar och metoder. Genom att utforma sådana standarder blir säkerhetskraven tydliga och utvecklingskostnaderna rimliga samtidigt som marknadens acceptans för produkten eller tjänsten ökar.

Många standarder inom elområdet beskriver tekniska lösningar och metoder som åstadkommer den elsäkerhet som föreskrivs av svenska myndigheter och av EU.

SEK är Sveriges röst i standardiseringsarbetet inom elområdet

SEK Svensk Elstandard svarar för standardiseringen inom elområdet i Sverige och samordnar svensk medverkan i internationell och europeisk standardisering. SEK är en ideell organisation med frivilligt deltagande från svenska myndigheter, företag och organisationer som vill medverka till och påverka utformningen av tekniska regler inom elektrotekniken.

SEK samordnar svenska intressenters medverkan i SEKs tekniska kommittéer och stödjer svenska experters medverkan i internationella och europeiska projekt.

Stora delar av arbetet sker internationellt

Utformningen av standarder sker i allt väsentligt i internationellt och europeiskt samarbete. SEK är svensk nationalkommitté av International Electrotechnical Commission (IEC) och Comité Européen de Normalisation Electrotechnique (CENELEC).

Standardiseringsarbetet inom SEK är organiserat i referensgrupper bestående av ett antal tekniska kommittéer som speglar hur arbetet inom IEC och CENELEC är organiserat.

Arbetet i de tekniska kommittéerna är öppet för alla svenska organisationer, företag, institutioner, myndigheter och statliga verk. Den årliga avgiften för deltagandet och intäkter från försäljning finansierar SEKs standardiseringsverksamhet och medlemsavgift till IEC och CENELEC.

Var med och påverka!

Den som deltar i SEKs tekniska kommittéarbete har möjlighet att påverka framtida standarder och får tidig tillgång till information och dokumentation om utvecklingen inom sitt teknikområde. Arbetet och kontakterna med kollegor, kunder och konkurrenter kan gynnsamt påverka enskilda företags affärsutveckling och bidrar till deltagarnas egen kompetensutveckling.

Du som vill dra nytta av dessa möjligheter är välkommen att kontakta SEKs kansli för mer information.

SEK Svensk Elstandard

Box 1284 164 29 Kista Tel 08-444 14 00 www.elstandard.se

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 55032

May 2012

ICS 33.100.10

English version

Electromagnetic compatibility of multimedia equipment -Emission requirements

(CISPR 32:2012)

Compatibilité électromagnétique des équipements multimédia -Exigences d'émission (CISPR 32:2012) Elektromagnetische Verträglichkeit von Multimediageräten und -einrichtungen -Anforderungen an die Störaussendung (CISPR 32:2012)

This European Standard was approved by CENELEC on 2012-03-05. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Management Centre: Avenue Marnix 17, B - 1000 Brussels

© 2012 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

Ref. No. EN 55032:2012 E

Foreword

The text of document CISPR/I/391/FDIS, future edition 1 of CISPR 32, prepared by CISPR SC I "Electromagnetic compatibility of information technology equipment, multimedia equipment and receivers" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 55032:2012.

The following dates are fixed:

•	latest date by which the document has to be implemented at national level by publication of an identical national	(dop)	2012-12-05
•	standard or by endorsement latest date by which the national standards conflicting with the document have to be withdrawn	(dow)	2015-03-05

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CENELEC by the European Commission and the European Free Trade Association, and supports essential requirements of EU Directive(s).

For the relationship with EU Directive see informative Annex ZZ, which is an integral part of this document.

Endorsement notice

The text of the International Standard CISPR 32:2012 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

CISPR 16 series NOTE Harmonized in EN 55016 series.

CISPR 22:2008 NOTE Harmonized as EN 55022:2010 (modified).

EN 55032:2012

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

Publication	<u>Year</u>	<u>Title</u>	<u>EN/HD</u>	Year
CISPR 16-1-1 + corr. October + corr. October + A1	2010 2010 2011 2010	Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-1: Radio disturbance and immunity measuring apparatus - Measuring apparatus	EN 55016-1-1 + A1	2010 2010
CISPR 16-1-2 + corr. January + A1 + A2	2003 2009 2004 2006	Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-2: Radio disturbance and immunity measuring apparatus - Ancillary equipment - Conducted disturbances	EN 55016-1-2 + A1 + A2	2004 2005 2006
CISPR 16-1-4 + corr. December	2010 2010	Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-4: Radio disturbance and immunity measuring apparatus - Antennas and test sites for radiated disturbance measurements	EN 55016-1-4	2010
CISPR 16-2-1 + A1	2008 2010	Specification for radio disturbance and immunity measuring apparatus and methods - Part 2-1: Methods of measurement of disturbances and immunity - Conducted disturbance measurements	EN 55016-2-1 + A1	2009 2011
CISPR 16-2-3 + A1	2010 2010	Specification for radio disturbance and immunity measuring apparatus and methods - Part 2-3: Methods of measurement of disturbances and immunity - Radiated disturbance measurements	EN 55016-2-3 + A1	2010 2010
CISPR 16-4-2	2011	Specification for radio disturbance and immunity measuring apparatus and methods - Part 4-2: Uncertainties, statistics and limit modelling - Measurement instrumentation uncertainty	EN 55016-4-2	2011
CISPR 16-4-3 + A1	2004 2006	Specification for radio disturbance and immunity measuring apparatus and methods - Part 4-3: Uncertainties, statistics and limit modeling - Statistical considerations in the determination of EMC compliance of mass- produced products	-	-
IEC 61000-4-6	2008	Electromagnetic compatibility (EMC) - Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields	EN 61000-4-6	2009

Publication	Year	Title	<u>EN/HD</u>	<u>Year</u>
IEC 60050-161	1990	International Electrotechnical Vocabulary (IEV) - Chapter 161: Electromagnetic compatibility	-	-
ISO/IEC 17025	2005	General requirements for the competence of testing and calibration laboratories	EN ISO/IEC 17025	2005
ANSI C63.5	2006	American National Standard (for) Electromagnetic Compatibility - Radiated Emission Measurements in Electromagnetic Interference (EMI) Control - Calibration of Antennas (9 kHz to 40 GHz)	-	-
IEEE 802.3	-	IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications	-	-

CONTENTS

1	Scope	7
2	Normative references	7
3	Terms, definitions and abbreviations	8
	3.1 Terms and definitions	8
	3.2 Abbreviations	. 12
4	Classification of equipment	.14
5	Requirements	.14
6	Measurements	.14
	6.1 General	.14
	6.2 Host systems and modular EUT	.15
7	6.3 Measurement procedure	16
/ 0		10
0	Test report	17
9	Compliance with this publication	10
10		. 10
11	measurement uncertainty	. 18
Anr	nex A (normative) Requirements	19
spe	cifications	.27
Anr	nex C (normative) Measurement procedures, instrumentation and supporting	00
info		.32
Anr	nex D (normative) Arrangement of EUI, local AE and associated cabling	.46
Anr	nex E (informative) Prescan measurements	.61
Anr	nex F (informative) Test report contents summary	.62
Anr C 4	nex G (informative) Support information for the measurement procedures defined in	63
Bih	liography	79
DID		10
Fig	ure 1 – Examples of ports	. 11
Fig	ure 2 – Example of a host system with different types of modules	. 15
Figi in T	ure A.1 – Graphical representation of the limits for the AC mains power port defined able A.9	. 19
Fig	ure C.1 – Measurement distance	. 33
Fia	ure C.2 – Boundary of EUT. Local AE and associated cabling	.34
Figu	ure C.3 – Decision tree for using different detectors with quasi peak and average	35
Fia	ure C.4 – Decision tree for using different detectors, with peak and average limits	36
Fig	ure $C.5$ – Decision tree for using different detectors, with a quasi-neak limit	36
Fin	ure C.6 – Calibration fixture	43
Fig	ure C.7 – Circuit arrangement for measurement of emission voltages at TV/FM	.0
bro	adcast receiver tuner ports	.44
Figi emi	ure C.8 – Circuit arrangement for the measurement of the wanted signal and ission voltage at the RF modulator output port of an EUT	.45

Figure D.1 – Example measurement arrangement for table-top EUT (Conducted and radiated emission) (Top view)	52
Figure D.2 – Example measurement arrangement for table-top EUT (Conducted emission measurement – alternative 1)	53
Figure D.3 – Example measurement arrangement for table-top EUT (Conducted emission measurement – alternative 2)	54
Figure D.4 – Example measurement arrangement for table-top EUT measuring in accordance with C.4.1.6.4	55
Figure D.5 – Example measurement arrangement for table-top EUT (Conducted emission measurement – alternative 2, showing AAN position)	56
Figure D.6 – Example measurement arrangement for floor standing EUT (Conducted emission measurement)	57
Figure D.7 – Example measurement arrangement for combinations of EUT (Conducted emission measurement)	58
Figure D.8 – Example measurement arrangement for table-top EUT (Radiated emission measurement)	58
Figure D.9 – Example measurement arrangement for floor standing EUT (Radiated emission measurement)	59
Figure D.10 – Example measurement arrangement for combinations of EUT (Radiated emission measurement)	60
Figure G.1 – Example AAN for use with unscreened single balanced pairs	63
Figure G.2 – Example AAN with high LCL for use with either one or two unscreened balanced pairs	64
Figure G.3 – Example AAN with high LCL for use with one, two, three, or four unscreened balanced pairs	65
Figure G.4 – Example AAN, including a 50 Ω source matching network at the voltage measuring port, for use with two unscreened balanced pairs	66
Figure G.5 – Example AAN for use with two unscreened balanced pairs	67
Figure G.6 – Example AAN, including a 50 Ω source matching network at the voltage measuring port, for use with four unscreened balanced pairs	68
Figure G.7 – Example AAN for use with four unscreened balanced pairs	69
Figure G.8 – Example AAN for use with coaxial cables, employing an internal common mode choke created by bifilar winding an insulated centre-conductor wire and an insulated screen-conductor wire on a common magnetic core (for example, a ferrite toroid)	70
Figure G.9 – Example AAN for use with coaxial cables, employing an internal common mode choke created by miniature coaxial cable (miniature semi-rigid solid copper screen or miniature double-braided screen coaxial cable) wound on ferrite toroids	70
Figure G.10 – Example AAN for use with multi-conductor screened cables, employing an internal common mode choke created by bifilar winding multiple insulated signal wires and an insulated screen-conductor wire on a common magnetic core (for example, a ferrite toroid)	71
Figure G.11 – Example AAN for use with multi-conductor screened cables, employing an internal common mode choke created by winding a multi-conductor screened cable on ferrite toroids	72
Figure G.12 – Basic circuit for considering the limits with defined common mode impedance of 150 Ω	75
Figure G.13 – Basic circuit for the measurement with unknown common mode impedance	75
Figure G.14 – Impedance layout of the components in the method described in C.4.1.6.3	76

Figure G.15 – Basic measurement setup to measure combined impedance of the 150 Ω and ferrites	78
Table 1 – Required highest frequency for radiated measurement	17
Table A.1 – Radiated emissions, basic standards and the limitation of the use of particular methods	20
Table A.2 – Requirements for radiated emissions at frequencies up to 1 GHz for Class A equipment	21
Table A.3 – Requirements for radiated emissions at frequencies above 1 GHz for Class A equipment	21
Table A.4 – Requirements for radiated emissions at frequencies up to 1 GHz for ClassB equipment	21
Table A.5 – Requirements for radiated emissions at frequencies above 1 GHz for Class B equipment	22
Table A.6 – Requirements for radiated emissions from FM receivers	22
Table A.7 – Conducted emissions, basic standards and the limitation of the use of particular methods	23
Table A.8 – Requirements for conducted emissions from the AC mains power ports of Class A equipment	23
Table A.9 – Requirements for conducted emissions from the AC mains power ports of Class B equipment.	24
Table A.10 – Requirements for asymmetric mode conducted emissions from Class A equipment	24
Table A.11 – Requirements for asymmetric mode conducted emissions from Class B equipment	25
Table A.12 – Requirements for conducted differential voltage emissions from Class B equipment	26
Table B.1 – Methods of exercising displays and video ports	28
Table B.2 – Display and video parameters	28
Table B.3 – Methods used to exercise ports	29
Table B.4 – Examples of digital broadcast signal specifications	30
Table C.1 – Analogue/digital data port emission procedure selection	38
Table C.2 – LCL values	39
Table C.3 – 5 m OATS/SAC NSA figures	45
Table D.1 – Arrangement spacing, distances and tolerances	48
Table F.1 – Summary of information to include in a test report	62
Table G.1 – Summary of advantages and disadvantages of the procedures described in C.4.1.6	73

ELECTROMAGNETIC COMPATIBILITY OF MULTIMEDIA EQUIPMENT –

Emission requirements

1 Scope

NOTE Blue coloured text within this document indicates text aligned with CISPR 35.

This International Standard applies to multimedia equipment (MME) as defined in 3.1.23 and having a rated r.m.s. AC or DC supply voltage not exceeding 600 V.

Equipment within the scope of CISPR 13 or CISPR 22 is within the scope of this publication.

MME intended primarily for professional use is within the scope of this publication.

The radiated emission requirements in this standard are not intended to be applicable to the intentional transmissions from a radio transmitter as defined by the ITU, nor to any spurious emissions related to these intentional transmissions.

Equipment, for which emission requirements in the frequency range covered by this publication are explicitly formulated in other CISPR publications (except CISPR 13 and CISPR 22), are excluded from the scope of this publication.

This document does not contain requirements for in-situ assessment. Such testing is outside the scope of this publication and may not be used to demonstrate compliance with it.

This publication covers two classes of MME (Class A and Class B). The MME classes are specified in Clause 4.

The objectives of this publication are:

- to establish requirements which provide an adequate level of protection of the radio spectrum, allowing radio services to operate as intended in the frequency range 9 kHz to 400 GHz;
- 2) to specify procedures to ensure the reproducibility of measurement and the repeatability of results.

2 Normative references

The following reference documents are indispensable for the application of this publication. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

CISPR 16-1-1:2010, Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-1: Radio disturbance and immunity measuring apparatus – Measuring apparatus Amendment 1 (2010)

CISPR 16-1-2:2003, Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-2: Radio disturbance and immunity measuring apparatus – Ancillary equipment – Conducted disturbances Amendment 1 (2004) Amendment 2 (2006) CISPR 16-1-4:2010, Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-4: Radio disturbance and immunity measuring apparatus – Antennas and test sites for radiated disturbance measurements

CISPR 16-2-1:2008, Specification for radio disturbance and immunity measuring apparatus and methods – Part 2-1: Methods of measurement of disturbances and immunity – Conducted disturbance measurements Amendment 1 (2010)

CISPR 16-2-3:2010, Specification for radio disturbance and immunity measuring apparatus and methods – Part 2-3: Methods of measurement of disturbances and immunity – Radiated disturbance measurements Amendment 1 (2010)

CISPR 16-4-2:2011, Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics and limit modelling – Measurement instrumentation uncertainty

CISPR/TR 16-4-3:2004, Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-3: Uncertainties, statistics and limit modelling – Statistical considerations in the determination of EMC compliance of mass-produced products Amendment 1 (2006)

IEC 60050-161:1990, International Electrotechnical Vocabulary – Chapter 161: Electromagnetic compatibility

IEC 61000-4-6:2008, *Electromagnetic compatibility (EMC) – Part 4-6: Testing and measurement techniques – Immunity to conducted disturbances, induced by radio-frequency fields*

ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories

IEEE Sdt 802.3, *IEEE Standard for Information technology – Specific requirements – Part 3: Carrier Sense Multiple Access with Collision Detection (CMSA/CD) Access Method and Physical Layer Specifications*

ANSI C63.5-2006, American National Standard (for) Electromagnetic Compatibility - Radiated Emission Measurements in Electromagnetic Interference (EMI) Control - Calibration of Antennas (9 kHz to 40 GHz)