

Edition 1.0 2012-12

TECHNICAL REPORT

High-voltage switchgear and controlgear – Part 306: Guide to IEC 62271-100, IEC 62271-1 and other IEC standards related to alternating current circuit-breakers

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 29.130.10

ISBN 978-2-83220-558-7

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

REW	ORD		15
Gene	eral		17
1.1	Scope		17
1.2	Norma	tive references	17
Evol	ution of	IEC standards for high-voltage circuit-breaker	18
Clas	sificatio	n of circuit-breakers	22
-			
	•	C C	
••••			
0.0			
	3.5.3	•	
3.6		-	
	•		
	-	-	
	4.4.1		
	4.4.2		
	4.4.3		
	4.4.4	Review and perspective	
	4.4.5	Theory	33
	4.4.6	Summary of 15/2 and 3/9 test methods	36
	4.4.7	Routine tests	
4.5	Correc	ction factors	37
	4.5.1	Altitude correction factor	37
	4.5.2	Humidity correction factor	40
4.6	Backg	round information about insulation levels and tests	41
	4.6.1	Specification	41
	4.6.2	Testing	43
	4.6.3	Combined voltage tests of longitudinal insulation	43
4.7	Lightn	ing impulse withstand considerations of vacuum interrupters	44
	4.7.1	General	44
	4.7.2	Conditioning during vacuum interrupter manufacturing	44
	4.7.3	De-conditioning in service	45
	4.7.4	Re-conditioning in service	45
	4.7.5	Performing lightning impulse withstand voltage tests	
Rate	d norma	al current and temperature rise	45
5.1	Gener	al	45
5.2	Load o	current carrying requirements	45
	5.2.1	Rated normal current	45
	5.2.2	Load current carrying capability under various conditions of ambient temperature and load	46
	Gene 1.1 1.2 Evol Clas 3.1 3.2 3.3 3.4 3.5 3.6 Insul 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Rate 5.1	General 1.1 Scope 1.2 Norma Evolution of Classification 3.1 General 3.2 Electria 3.3 Capace 3.4 Mecha 3.5 Classification 3.6 Conclustion Insulation let 4.1 4.1 Generation 4.2 Longitt 4.3 High-w 4.4 Impulse 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.6 4.4.7 4.5.2 4.6 4.6.1 4.6.2 4.6.3 4.7 Lightn 4.7.1 4.7.2 4.6.3 4.7.4 4.7.4	1.2 Normative references Evolution of IEC standards for high-voltage circuit-breaker. Classification of circuit-breakers. 3.1 General 3.2 Electrical endurance class E1 and E2 3.3 Capacitive current switching class C1 and C2 3.4 Mechanical endurance class M1 and M2 3.5 Class S1 and S2. 3.5.1 General 3.5.2 Cable system 3.5.3 Line system 3.5.4 General 4.5 Conclusion Insulation levels and dielectric tests 4.1 General 4.2 Longitudinal voltage stresses 4.3 High-voltage tests 4.4 Impulse voltage withstand test procedures 4.4.1 General 4.4.2 Application to high-voltage switching devices 4.4.3 Additional criteria to pass the tests 4.4.4 Review and perspective 4.4.5 Theory. 4.4.6 Summary of 15/2 and 3/9 test methods 4.4.7 Routine tests 4.5 Correction factor 4.5.2 Humidit

	5.3	Tempe	rature rise testing	49
		5.3.1	Influence of power frequency on temperature rise and temperature	40
		E 2 2	rise tests	
		5.3.2 5.3.3	Test procedure Temperature rise test on vacuum circuit-breakers	
		5.3.4	Resistance measurement	
	5.4		nal information	
	5.4	5.4.1		
		5.4.1	Table with ratios I_a/I_r Derivation of temperature rise equations	
6	Trans	••••=	covery voltage	
0	6.1		nization of IEC and IEEE transient recovery voltages	
	0.1	6.1.1	General	
		6.1.2	A summary of the TRV changes	
		6.1.2	Revision of TRVs for rated voltages of 100 kV and above	
		6.1.4	Revision of TRVs for rated voltages less than 100 kV	
	6.2		Transient Recovery Voltage (ITRV)	
	0.2	6.2.1	Basis for specification	
		6.2.1	Applicability	
		6.2.2	Test duties where ITRV is required	
		6.2.4	ITRV waveshape	
		6.2.5	Standard values of ITRV	
	6.3		J	
	0.0	6.3.1	ITRV measurement	
		6.3.2	SLF with ITRV	
		6.3.3	Unit testing	
7	Short		ults	
	7.1		ine fault requirements	
		7.1.1	Basis for specification	
		7.1.2	Technical comment	
		7.1.3	Single-phase faults	
		7.1.4	Surge impedance of the line	
		7.1.5	Peak voltage factor	
		7.1.6	Rate-of-Rise of Recovery Voltage (RRRV) factor "s"	
	7.2		sting	
		7.2.1	Test voltage	
		7.2.2	Operating sequence	
		7.2.3	Test duties	
		7.2.4	Test current asymmetry	
		7.2.5	Line side time delay	
		7.2.6	Supply side circuit	
	7.3	Additio	nal explanations on SLF	
		7.3.1	Surge impedance evaluation	
		7.3.2	Influence of additional capacitors on SLF interruption	
	7.4	Compa	arison of surge impedances	
	7.5		ation of actual percentage of SLF breaking currents	
	7.6		ith parallel capacitance	
8	Out-c		e switching	
	8.1		nce system conditions	
		8.1.1	General	

		8.1.2	Case A	
	0.0	8.1.3	Case B	86
	8.2		arameters introduced into Tables 1b and 1c of the first edition of 271-100	
		8.2.1	General	
		8.2.2	Case A	
		8.2.3	Case B	
		8.2.4	TRV parameters for out-of-phase testing	
9	Swit	ching of	capacitive currents	
	9.1	•	al	
	9.2	Genera	al theory of capacitive current switching	90
		9.2.1	De-energisation of capacitive loads	
		9.2.2	Energisation of capacitive loads	
	9.3	Non-sı	ustained disruptive discharge (NSDD)	
	9.4		al application considerations	
		9.4.1	General	124
		9.4.2	Maximum voltage for application	124
		9.4.3	Rated frequency	
		9.4.4	Rated capacitive current	124
		9.4.5	Voltage and earthing conditions of the network	
		9.4.6	Restrike performance	126
		9.4.7	Class of circuit-breaker	126
		9.4.8	Transient overvoltages and overvoltage limitation	126
		9.4.9	No-load overhead lines	128
		9.4.10	Capacitor banks	130
		9.4.11	Switching through transformers	137
		9.4.12	Effect of transient currents	138
		9.4.13	Exposure to capacitive switching duties during fault switching	140
		9.4.14	Effect of load	140
		9.4.15	Effect of reclosing	141
		9.4.16	Resistor thermal limitations	141
		9.4.17	Application considerations for different circuit-breaker types	141
	9.5		lerations of capacitive currents and recovery voltages under fault	
			ons	
		9.5.1	Voltage and current factors	143
		9.5.2	Reasons for these specific tests being non-mandatory in the standard	144
		9.5.3	Contribution of a capacitor bank to a fault	144
		9.5.4	Switching overhead lines under faulted conditions	
		9.5.5	Switching capacitor banks under faulted conditions	146
		9.5.6	Switching cables under faulted conditions	
		9.5.7	Examples of application alternatives	
	9.6	Explan	natory notes regarding capacitive current switching tests	
		9.6.1	General	
		9.6.2	Restrike performance	149
		9.6.3	Test programme	
		9.6.4	Subclause 6.111.3 of IEC 62271-100:2008 – Characteristics of supply circuit	
		9.6.5	Subclause 6.111.5 of IEC 62271-100:2008 – Characteristics of the capacitive circuit to be switched	149
		3.0.3		

		9.6.6 9.6.7	Subclause 6.111.9.1.1 of IEC 62271-100:2008 – Class C2 test duties Subclauses 6.111.9.1.1 and 6.111.9.2.1 of IEC 62271-100:2008 – Class C1 and C2 test duties	
		9.6.8	Subclauses 6.111.9.1.2 and 6.111.9.1.3 of IEC 62271-100:2008 – Single-phase and three-phase line- and cable-charging current	
			switching tests	150
		9.6.9	Subclauses 6.111.9.1.2. to 6.111.9.1.5 of IEC 62271-100:2008 – Three-phase and single-phase line, cable and capacitor bank switching tests	150
		9.6.10	Subclauses 6.111.9.1.4 and 6.111.9.1.5 of IEC 62271-100:2008 –	
			Three-phase and single-phase capacitor bank switching tests	
10	Gas	tightnes	S	151
	10.1	•	cation	
	10.2	•]	151
	10.3		ative test method and calibration procedure for type tests on closed re systems	152
		10.3.1	Description of the cumulative test method	152
		10.3.2	Sensitivity, accuracy and calibration	153
		10.3.3	Test set-up and test procedure	153
		10.3.4	Example: leakage rate measurement of a circuit-breaker during low temperature test	154
11	Misce	ellaneou	is provisions for breaking tests	155
	11.1		ofor operation to be used during demonstration of the rated operating nee during short-circuit making and breaking tests	155
	11.2	•	ative operating mechanisms	
		11.2.1	General	156
		11.2.2	Comparison of the mechanical characteristics	157
		11.2.3	Comparison of T100s test results	159
		11.2.4	Additional test T100a	161
		11.2.5	Conclusions	162
12	Rate	d and te	st frequency	162
	12.1	Genera	al	162
	12.2	Basic o	considerations	163
		12.2.1	Temperature rise tests	163
		12.2.2	Short-time withstand current and peak withstand current tests	163
		12.2.3	Short-circuit making current	
		12.2.4	Terminal faults	
		12.2.5	Short-line fault	
		12.2.6	Capacitive current switching	
	12.3		ability of type tests at different frequencies	
		12.3.1	Temperature rise tests	
		12.3.2	Short-time withstand current and peak withstand current tests	
			Short-circuit making current test	
		12.3.4	Terminal faults (direct and synthetic tests)	
			Short-line fault (direct and synthetic tests)	
10	Torre		Capacitive current switching	
13				
	13.1		al	
	13.2		estration of arcing time	
	13.3	Demor	stration of the arcing time for three-phase tests	108

	13.4	Power frequency recovery voltage and the selection of the first-pole-to-clear factors 1,0; 1,2; 1,3 and 1,5	168
		13.4.1 General	168
		13.4.2 Equations for the first, second and third-pole-to-clear factors	
		13.4.3 Standardised values for the second- and third- pole-to-clear factors	
	13.5	Characteristics of recovery voltage	
		13.5.1 Values of rate-of-rise of recovery voltage and time delays	
		13.5.2 Amplitude factors	
	13.6	Arcing window and $k_{\rm p}$ requirements for testing	
	13.7	Single-phase testing to cover three-phase testing requirements	
	13.8	Combination tests for k_{pp} = 1,3 and 1,5	
	13.9	Suitability of a particular short-circuit current rated circuit-breaker for use at	
	40.40	an application with a lower short-circuit requirement	
		Basis for the current and TRV values of the basic short-circuit test-duty T10	
14	Doub	le earth fault	
	14.1	Basis for specification	
	14.2	Short-circuit current	
	14.3	TRV	
	14.4		
15	Trans	sport, storage, installation, operation and maintenance	182
	15.1	General	182
	15.2	Transport and storage	183
	15.3	Installation	184
	15.4	Commissioning	184
	15.5	Operation	186
	15.6	Maintenance	186
16	Induc	ctive load switching	186
	16.1	General	186
	16.2	Shunt reactor switching	
		16.2.1 General	
		16.2.2 Chopping overvoltages	
		16.2.3 Re-ignition overvoltages	
		16.2.4 Oscillation circuits	
		16.2.5 Overvoltage limitation	
		16.2.6 Circuit-breaker specification and selection	
		16.2.7 Testing	
	16.3	Motor switching	
	10.5	16.3.1 General	
		16.3.2 Chopping and re-ignition overvoltages	
		16.3.3 Voltage escalation	
		•	
		16.3.4 Virtual current chopping	
		16.3.5 Overvoltage limitation	
		16.3.6 Circuit-breaker specification and selection	
	40.4	16.3.7 Testing	
	16.4	Unloaded transformer switching	
		16.4.1 General	
		16.4.2 Oil-filled transformers	
	40 -	16.4.3 Dry type transformers	
	16.5	Shunt reactor characteristics	207

	16.5.1	General	207
		Shunt reactors rated 72,5 kV and above	
		Shunt reactors rated below 72,5 kV	
16.6	•	and station characteristics	
		General	
		System characteristics	
16.7		Station characteristics	
16.7 16.8		tion of laboratory test results to actual shunt reactor installations	
10.0	•••	General	
		Overvoltage estimation procedures	
		Case studies	
16.9	Statisti	cal equations for derivation of chopping and re-ignition overvoltages	222
	16.9.1	General	222
	16.9.2	Chopping number independent of arcing time	222
	16.9.3	Chopping number dependent on arcing time	222
		tive) Consideration of d.c. time constant of the rated short-circuit lication of high-voltage circuit-breakers	224
Annex B (informa	tive) Interruption of currents with delayed zero crossings	248
Annex C	íinforma	tive) Parallel switching	263
		tive) Application of current limiting reactors	
Annex E (informa	tive) Explanatory notes on the revision of TRVs for circuit-breakers	
of rated v	oltages	higher than 1 kV and less than 100 kV	274
		tive) Current and test-duty combination for capacitive current	278
Annex G	(informa	tive) Grading capacitors	291
Annex H	(informa	tive) Circuit-breakers with opening resistors	295
Annex I (i	nformat	ive) Circuit-breaker history	318
•		· · · · · · · · · · · · · · · · · · ·	
•		pility of acceptance (passing the test) for the 15/2 and 3/9 test series	31
		bility of acceptance at 5 % probability of flashover for 15/2 and 3/9	32
Figure 3 -	- User ri	isk at 10 % probability of flashover for 15/2 and 3/9 test series	32
•		ting characteristic curves for 15/2 and 3/9 test series	
		o for 15/2 and 3/9 test methods	
Figure 6 -	- β risks	for 15/2 and 3/9 test methods	37
		ampling plan for AQL of 10 %	
		tive discharge mode of external insulation of switchgear and g a rated voltage above 1 kV up to and including 52 kV	41
-		erature curve and definitions	
Figure 10	– Evalu	ation of the steady state condition for the last quarter of the test Figure 9	
Figure 11	– Com	parison of IEEE, IEC and harmonized TRVs, example for 145 kV at	
		pp = 1,3	56
		parison of IEEE, IEC and harmonized TRVs with compromise values mple for 145 kV at 100 % I_{SC} with k_{pp} = 1,3	59

Figure 13 – Comparison of TRV's for cable-systems and line-systems	61
Figure 14 – Harmonization of TRVs for circuit-breakers < 100 kV	62
Figure 15 – Representation of ITRV and terminal fault TRV	64
Figure 16 – Typical graph of line side TRV with time delay and source side with ITRV	66
Figure 17 – Effects of capacitor size on the short-line fault component of recovery voltage with a fault 915 m from circuit-breaker	77
Figure 18 – Effect of capacitor location on short-line fault component of transient recovery voltage with a fault 760 m from circuit-breaker	78
Figure 19 – TRV obtained during a L ₉₀ test duty on a 145 kV, 50 kA, 60 Hz circuit- breaker	80
Figure 20 – TRV vs. ωIZ as function of t/t_{dL} when t_L/t_{dL} = 4,0	85
Figure 21 – Typical system configuration for out-of-phase breaking for case A	86
Figure 22 – Typical system configuration for out-of-phase breaking for Case B	86
Figure 23 – Voltage on both sides during CO under out-of-phase conditions	89
Figure 24 – Fault currents during CO under out-of-phase	89
Figure 25 – TRVs for out-of-phase clearing (enlarged)	89
Figure 26 – Single-phase equivalent circuit for capacitive current interruption	91
Figure 27 – Voltage and current shapes at capacitive current interruption	92
Figure 28 – Voltage and current wave shapes in the case of a restrike	93
Figure 29 – Voltage build-up by successive restrikes	94
Figure 30 – Recovery voltage of the first-pole-to-clear at interruption of a three-phase non-effectively earthed capacitive load	95
Figure 31 – Cross-section of a high-voltage cable	96
Figure 32 – Screened cable with equivalent circuit	96
Figure 33 – Belted cable with equivalent circuit	96
Figure 34 – Recovery voltage peak in the first-pole-to-clear as a function of $C_1/C_{0,}$ delayed interruption of the second phase	99
Figure 35 – Typical current and voltage relations for a compensated line	100
Figure 36 – Half cycle of recovery voltage	101
Figure 37 – Recovery voltage on first-pole-to-clear for three-phase interruption: capacitor bank with isolated neutral	102
Figure 38 – Parallel capacitor banks	105
Figure 39 – Equivalent circuit of a compensated cable	109
Figure 40 – Currents when making at voltage maximum and full compensation	110
Figure 41 – Currents when making at voltage zero and full compensation	110
Figure 42 – Currents when making at voltage maximum and partial compensation	111
Figure 43 – Currents when making at voltage zero and partial compensation	112
Figure 44 – Typical circuit for back-to-back cable switching	114
Figure 45 – Equivalent circuit for back-to-back cable switching	116
Figure 46 – Bank-to-cable switching circuit	118
Figure 47 – Equivalent bank-to-cable switching circuit	118
Figure 48 – Energisation of no-load lines: basic phenomena	120
Figure 49 – Pre-insertion resistors and their function	120
Figure 50 – NSDD in a single-phase test circuit	121
Figure 51 – NSDD (indicated by the arrow) in a three-phase test	122

Figure 52 – A first example of a three-phase test with an NSDD causing a voltage shift in all three phases of the same polarity and magnitude	122
Figure 53 – A second example of three-phase test with an NSDD (indicated by the arrow) causing a voltage shift in all three phases of the same polarity and magnitude	123
Figure 54 – A typical oscillogram of an NSDD where a high resolution measurement was used to observe the voltage pulses produced by the NSDD	123
Figure 55 – Example of the recovery voltage across a filter bank circuit-breaker	126
Figure 56 – RMS charging current versus system voltage for different line configurations at 60 Hz	129
Figure 57 – Typical circuit for back-to-back switching	132
Figure 58 – Example of 123 kV system	135
Figure 59 – Voltage and current relations for capacitor switching through interposed transformer	138
Figure 60 – Station illustrating large transient inrush currents through circuit-breakers from parallel capacitor banks	139
Figure 61 – Fault in the vicinity of a capacitor bank	144
Figure 62 – Recovery voltages and currents for different interrupting sequences	146
Figure 63 – Reference condition	147
Figure 64 – Comparison of reference and alternative mechanical characteristics	158
Figure 65 – Closing operation outside the envelope	159
Figure 66 – Mechanical characteristics during a T100s test	160
Figure 67 – Arcing windows and k_p value for three-phase fault in a non-effectively earthed system	172
Figure 68 – Three-phase unearthed fault current interruption	173
Figure 69 – Arcing windows and k_p values for three-phase fault to earth in an effectively earthed system at 800 kV and below	174
Figure 70 – Arcing windows and k_p values for three-phase fault to earth in an effectively earthed system above 800 kV	175
Figure 71 – Simulation of three-phase to earth fault current interruption at 50 Hz	176
Figure 72 – Representation of a system with a double earth fault	179
Figure 73 – Representation of circuit with double-earth fault	180
Figure 74 – Fault currents relative to the three-phase short-circuit current	182
Figure 75 – General case for shunt reactor switching	188
Figure 76 – Current chopping phenomena	189
Figure 77 – General case first-pole-to-clear representation	189
Figure 78 – Single phase equivalent circuit for the first-pole-to-clear	190
Figure 79 – Voltage conditions at and after current interruption	191
Figure 80 – Shunt reactor voltage at current interruption	192
Figure 81 – Re-ignition at recovery voltage peak for a circuit with low supply side capacitance	194
Figure 82 – Field oscillogram of switching out a 500 kV 135 Mvar solidly earthed shunt reactor	195
Figure 83 – Single-phase equivalent circuit	196
Figure 84 – Motor switching equivalent circuit	202
Figure 85 – Unloaded transformer representation for TRV calculation	205
Figure 86 – TRV on switching out an unloaded 500 kV, 300 MVA transformer bank	206

	~ ~ ~
Figure 87 – Arc characteristic	
Figure 88 – Rizk's equivalent circuit for small current deviations from steady state	
Figure 89 – Single phase equivalent circuit Figure 90 – Circuit for calculation of arc instability	
Figure 90 – Circuit for calculation of arc instability	
Figure 92 – Suppression peak overvoltage versus arcing time	
Figure 93 – Calculated chopped current levels versus arcing time	
Figure 94 – Calculated chopping numbers versus arcing time	
Figure 95 – Linear regression for all test points	
Figure A.1 – Simplified single-phase circuit	
Figure A.2 – Percentage d.c. component in relation to the time interval from the initiation of the short-circuit for the standard time constants and for the alternative special case time constants (from IEC 62271-100)	
Figure A.3 – First valid operation in case of three-phase test (τ = 45 ms) on a circuit- breaker exhibiting a very short minimum arcing time	236
Figure A.4 – Second valid operation in case of three-phase test on a circuit-breaker exhibiting a very short minimum arcing time	236
Figure A.5 – Third valid operation in case of three-phase test on a circuit-breaker exhibiting a very short minimum arcing time	237
Figure A.6 – Plot of 60 Hz currents with indicated d.c. time constants	240
Figure A.7 – Plot of 50 Hz currents with indicated d.c. time constants	240
Figure A.8 – Three-phase testing of a circuit-breaker with a rated d.c. time constant of the rated short-circuit breaking current longer than the test circuit time constant	242
Figure A.9 – Single phase testing of a circuit-breaker with a rated d.c. time constant of the rated short-circuit breaking current shorter than the test circuit time constant	244
Figure A.10 – Single-phase testing of a circuit-breaker with a rated d.c. time constant of the rated short-circuit breaking current longer than the test circuit time constant	246
Figure B.1 – Single line diagram of a power plant substation	249
Figure B.2 – Performance chart (power characteristic) of a large generator	250
Figure B.3 – Circuit-breaker currents <i>i</i> and arc voltages u_{arc} in case of a three-phase fault following underexcited operation: Non-simultaneous fault inception	250
Figure B.4 – Circuit-breaker currents <i>i</i> and arc voltages u_{arc} in case of a three-phase fault following underexcited operation: Simultaneous fault inception at third phase voltage zero	251
Figure B.5 – Circuit-breaker currents <i>i</i> and arc voltages u_{arc} in case of a three-phase fault following underexcited operation: Simultaneous fault inception at third phase voltage crest	251
Figure B.6 – Circuit-breaker currents i and arc voltages u_{arc} under conditions of a non- simultaneous three-phase fault, underexcited operation and failure of a generator transformer	252
Figure B.7 – Circuit-breaker currents i and arc voltages u_{arc} under conditions of a non-simultaneous three-phase fault following full load operation	253
Figure B.8 – Circuit-breaker currents <i>i</i> and arc voltages u_{arc} under conditions of a non-simultaneous three-phase fault following no-load operation	254
Figure B.9 – Circuit-breaker currents <i>i</i> and arc voltages u_{arc} under conditions of unsynchronized closing with 90° differential angle	
Figure B.10 – Prospective (inherent) current	256
Figure B.11 – Arc voltage-current characteristic for a SF ₆ puffer type interrupter	257

TR 62271-306 © IEC:2012(E) - 11 -

Figure B.12 – Assessment function $e(t)$	257
Figure B.13 – Network with contribution from generation and large motor load	258
Figure B.14 – Computer simulation of a three-phase simultaneous fault with contribution from generation and large motor load	259
Figure B.15 – Short-circuit at voltage zero of phase A (maximum d.c. component in phase A) with transition from three-phase to two-phase fault	260
Figure B.16 – Short-circuit at voltage crest of phase B (phase B totally symmetrical) and transition from three-phase to two-phase fault	261
Figure C.1 – Equivalent circuit for parallel switching analysis	264
Figure C.2 – Parallel switching between transmission lines with disconnector	266
Figure D.1 – TRV for three-phase ungrounded fault on 25 kV feeder with current limiting reactor (1 p.u. = 30,6 kV peak)	271
Figure D.2 – EMTP simulation for case in Figure D.1 with and without parallel capacitance (1 p.u. = 20,4 kVpeak)	271
Figure D.3 – TRV for three-phase ungrounded fault on 66 kV shunt capacitor bank with 10 mH current limiting reactor	272
Figure D.4 – Initial part of TRV for three-phase ungrounded fault on 66 kV shunt capacitor bank with 10 mH current limiting reactor	272
Figure D.5 – Initial part of TRV for three-phase ungrounded fault on 66 kV shunt capacitor bank with 10 mH current limiting reactor with parallel 20 nF capacitor	273
Figure F.1 – Test-duty 2 combination for Case 1	280
Figure F.2 – TD1 combination for case a)	281
Figure F.3 – TD1 combination for case b)	281
Figure F.4 – TD1/TD2 combination for Case 1	282
Figure F.5 – TD2 combination for Case 2	285
Figure F.6 – TD1 combination	286
Figure F.7 – TD1/TD2 combination for Case 2	286
Figure F.8 – TD2 combination for Case 3	289
Figure F.9 – TD1 combination for Case 3	289
Figure G.1 – Equivalent circuit of a grading capacitor	291
Figure G.2 – Equivalent circuit for determination of $tan \delta$, power factor and quality factor	292
Figure G.3 – Vector diagram of capacitor impedances	292
Figure H.1 – Typical system configuration for breaking with opening resistors	295
Figure H.2 – Circuit diagram used for the RLC method, ramp current injection	296
Figure H.3 – Relationship between TRV peak and critical damping	297
Figure H.4 – Approximation by superimposed ramp elements	298
Figure H.5 – Results of calculations done with RLC method	300
Figure H.6 – Example of a calculation of the TRV across the main interrupter for T100 using 700 Ω opening resistors	302
Figure H.7 – Example of a calculation of the TRV across the main interrupter for T10 using 700 Ω opening resistors	303
Figure H.8 – Typical TRV waveshapes in the time domain using the Laplace transform	303
Figure H.9 – TRV plots for resistor interrupter for a circuit-breaker with opening resistor in the case of terminal faults	305
Figure H.10 – Typical waveforms for out-of-phase interruption – Network 1 without opening resistor	306

Figure H.11 – Typical waveforms for out-of-phase interruption – Network 1 with opening resistor (700 Ω)	. 307
Figure H.12 – Typical waveforms for out-of-phase interruption – Network 2 without opening resistor	. 308
Figure H.13 – Typical waveforms for out-of-phase interruption – Network 2 with opening resistor (700 Ω)	. 309
Figure H.14 – Typical recovery voltage waveshape of capacitive current switching on a circuit-breaker equipped with opening resistors	311
Figure H.15 – Recovery voltage waveforms across the resistor interrupter during capacitive current switching by a circuit-breaker with opening resistors	312
Figure H.16 – Timing sequence of a circuit-breaker with opening resistor	. 313
Figure H.17 – Voltage waveshapes for line-charging current breaking operations	. 314
Figure I.1 – Manufacturing timelines of different circuit-breaker types	. 319

Table 1 – Classes and shapes of stressing voltages and overvoltages (from IEC 60071-1:2006, Table 1)	27
Table 2 – 15/2 and 3/9 test series attributes	
Table 3 – Summary of theoretical analysis	
Table 4 – Values for <i>m</i> for the different voltage waveshapes	
Table 5 – Maximum ambient temperature versus altitude (IEC 60943)	49
Table 6 – Some examples of the application of acceptance criteria for steady state conditions	50
Table 7 – Ratios of I_a/I_r for various ambient temperatures based on Table 3 of IEC 62271-1:2007	52
Table 8 – Summary of recommended changes to harmonize IEC and IEEE TRV requirements	57
Table 9 – Recommended u ₁ values	57
Table 10 – Standard values of initial transient recovery voltage – Rated voltages100 kV and above	65
Table 11 – Comparison of typical values of surge impedances for a single-phase fault (or third pole to clear a three-phase fault) and the first pole to clear a three-phase fault	81
Table 12 – Actual percentage short-line fault breaking currents	82
Table 13 – Voltage factors for single-phase capacitive current switching tests	102
Table 14 – Inrush current and frequency for switching capacitor banks	133
Table 15 – Typical values of inductance between capacitor banks	134
Table 16 – Results of the calibration of the enclosure	155
Table 17 – Temperature rise tests	165
Table 18 – Short-time withstand current tests	165
Table 19 – Peak withstand current tests	165
Table 20 – Short-circuit making current tests	165
Table 21 – Terminal faults: symmetrical test duties	166
Table 22 – Terminal faults: asymmetrical test duties	166
Table 23 – Short-line faults	
Table 24 – Capacitive current switching	166
Table 25 – First-pole-to-clear factors k _{pp}	
Table 26 – Pole-to-clear factors for each clearing pole	

Table 27 – Pole-to-clear factors for various types of faults	171
Table 28 – Example of comparison of rated values against application (U_{Γ} = 420 kV)	177
Table 29 – Circuit-breaker chopping numbers	193
Table 30 – Chopping and re-ignition overvoltage limitation method evaluation for shunt reactor switching.	197
Table 31 – Re-ignition overvoltage limitation method evaluation for motor switching	203
Table 32 – Typical shunt reactor electrical characteristics	207
Table 33 – Connection characteristics for shunt reactor installations	209
Table 34 – Capacitance values of various station equipment	210
Table 35 – Laboratory test parameters	217
Table 36 – 500 kV circuit-breaker TRVs	221
Table 37 – 1 000 kV circuit-breaker transient recovery voltages	221
Table 38 – 500 kV circuit-breaker: maximum re-ignition overvoltage values	221
Table A.1 – X/R values	227
Table A.2 – I _{peak} values	227
Table A.3 – Comparison of last major current loop parameters, case 1	
Table A.4 – Comparison of last major current loop parameters, case 1: test parameters used for the reference case set at the minimum permissible values	232
Table A.5 – Comparison of last minor current loop parameters, case 1	233
Table A.6 – Comparison of last major current loop parameters, case 2	234
Table A.7 – Comparison of last major current loop parameters, case 2: test parameters used for the reference case set at the minimum permissible values	235
Table A.8 – 60 Hz comparison between the integral method and the methodprescribed by IEC 62271-100	238
Table A.9 – 50 Hz comparison between the integral method and the methodprescribed by IEC 62271-100	238
Table A.10 – Example showing the test parameters obtained during a three-phase test when the d.c. time constant of the test circuit is shorter than the rated d.c. time constant of the rated short-circuit current	241
Table A.11 – Example showing the test parameters obtained during a single-phase test when the d.c. time constant of the test circuit is longer than the rated d.c. time constant of the rated short-circuit current	243
Table A.12 – Example showing the test parameters obtained during a single-phase test when the d.c. time constant of the test circuit is shorter than the rated d.c. time constant of the rated short-circuit current.	245
Table C.1 – Current transfer direction for parallel circuit-breakers with same contact parting instant and based on arc voltage	267
Table C.2 – Analysis of actual parallel switching tests	268
Table C.3 – Current transfer directions for parallel circuit breakers with inherent opening times and arc voltages	269
Table F.1 – Summary of required test-duties for covering the capacitive current switching without any test-duty combination	279
Table F.2 – Case where TD2 covers LC2, CC2 and BC2	280
Table F.3 – Combination values for the case where TD2 covers only CC2 and BC2	280
Table F.4 – Combination values for case a): the combined TD1 covers CC1 and BC1	
Table F.5 – Combination values for case b): the combined TD1 covers LC1 and CC1	
Table F.6 – Combination values for a TD2 covering LC2, CC1 and BC1	282

Table F.7 – Summary of the possible test-duty combination for a 145 kV circuit- breaker, tested single-pole according to class C2	283
Table F.8 – Neutral connection prescriptions for three-phase capacitive tests	284
Table F.9 – Summary of required test-duties for covering the capacitive current switching without any test duty combination	284
Table F.10 – Combination values for a TD2 covering LC2, CC2 and BC2	285
Table F.11 – Values for the additional TD2 for covering only BC2	285
Table F.12 – Values for the three a TD1 that shall be performed since no combination is possible	286
Table F.13 – Combination values for a TD2 covering LC2, CC2 and BC1	287
Table F.14 – Summary of the possible test-duty combination for a 36 kV circuit- breaker tested under three-phase conditions according to class C2	287
Table F.15 – Summary of required test-duties for covering the capacitive current switching without any test-duty combination	288
Table F.16 – Combination values for a TD2 covering LC2, CC2 and BC2	289
Table F.17 – Combination values for a TD1 covering LC1, CC1 and BC1	290
Table F.18 – Summary of the possible test-duty combination for a 245 kV circuit- breaker, tested single-phase according to class C1	290
Table H.1 – Summary of TRV between main and resistor interrupters after out-of- phase interruption with/without opening resistor	309
Table H.2 – TRV on main interrupter with opening resistor for T100,T60,T30, T10, OP and SLF U_r = 1 100 kV, I_{sc} = 50 kA, R = 700 Ω	310
Table H.3 – TRV on resistor interrupter for T100s, T60, T30, T10, OP2 and SLF with opening resistor of 700 Ω	310
Table H.4 – Example of calculated values on main and resistor interrupter	317

INTERNATIONAL ELECTROTECHNICAL COMMISSION

HIGH-VOLTAGE SWITCHGEAR AND CONTROLGEAR –

Part 306: Guide to IEC 62271-100, IEC 62271-1 and other IEC standards related to alternating current circuit-breakers

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

IEC 62271-306, which is a technical report, has been prepared by subcommittee 17A: High-voltage switchgear and controlgear, of IEC technical committee 17: Switchgear and controlgear.

The text of this technical report is based on the following documents:

Enquiry draft	Report on voting
17A/1003A/DTR	17A/1021/RVC

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 62271 series, published under the general title *High-voltage switchgear* and *controlgear*, can be found on the IEC website.

The document follows the structure of IEC 62271-1 and IEC 62271-100. The topics addressed appear in the order they appear in IEC 62271-1 and IEC 62271-100.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

HIGH-VOLTAGE SWITCHGEAR AND CONTROLGEAR –

Part 306: Guide to IEC 62271-100, IEC 62271-1 and other IEC standards related to alternating current circuit-breakers

1 General

1.1 Scope

This part of IEC 62271 is applicable to a.c. circuit-breakers designed for indoor or outdoor installation and for operation at frequencies of 50 Hz and 60 Hz on systems having voltages above 1 000 V.

NOTE While this technical report mainly addresses circuit-breakers, some clauses (e.g. Clause 5) apply to switchgear and controlgear.

This technical report addresses utility, consultant and industrial engineers who specify and apply high-voltage circuit-breakers, circuit-breaker development engineers, engineers in testing stations, and engineers who participate in standardization. It is intended to provide background information concerning the facts and figures in the standards and provide a basis for specification for high-voltage circuit-breakers. Thus, its scope will cover the explanation, interpretation and application of IEC 62271-100 and IEC 62271-1 as well as related standards and technical reports with respect to high-voltage circuit-breakers.

Rules for circuit-breakers with intentional non-simultaneity between the poles are covered by IEC 62271-302.

This technical report does not cover circuit-breakers intended for use on motive power units of electrical traction equipment; these are covered by the IEC 60077 series.

Generator circuit-breakers installed between generator and step-up transformer are not within the scope of this technical report.

This technical report does not cover self-tripping circuit-breakers with mechanical tripping devices or devices which cannot be made inoperative.

Disconnecting circuit-breakers are covered by IEC 62271-108.

By-pass switches in parallel with line series capacitors and their protective equipment are not within the scope of this technical report. These are covered by IEC 62271-109 and IEC 60143-2.

In addition, special applications (among others parallel switching, delayed current zero crossings) are treated in annexes to this document.

1.2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60060-1:2010, High-voltage test techniques – Part 1: General definitions and test requirements

IEC 60071-1:2006, Insulation co-ordination – Part 1: Definitions, principles and rules

IEC 60071-2:1996, Insulation co-ordination – Part 2: Application guide

IEC 60376, Specification of technical grade sulfur hexafluoride (SF $_6$) for use in electrical equipment

IEC 60480, Guidelines for the checking and treatment of sulfur hexafluoride (SF₆) taken from electrical equipment and specification for its re-use

IEC 62146-1, Grading capacitors for high-voltage alternating current circuit-breakers¹

IEC 62271-1:2007, High-voltage switchgear and controlgear – Part 1: Common specifications

IEC 62271-4, High-voltage switchgear and controlgear – Part 4: Handling procedures for sulphur Hexafluoride (SF₆) $^{\rm 2}$

IEC 62271-100:2008, *High-voltage switchgear and controlgear – Part 100: Alternating-current circuit-breakers* Amendment 1:2012³

IEC 62271-101, High-voltage switchgear and controlgear – Part 101: Synthetic testing

IEC 62271-102:2001, *High-voltage switchgear and controlgear – Part 102: Alternating current dosconnectors and earthing switches*

IEC 62271-110, High-voltage switchgear and controlgear – Part 110: Inductive load switching

IEC 62271-310, High-voltage switchgear and controlgear – Part 310: Electrical endurance testing for circuit-breakers above a rated voltage of 52 kV

¹ To be published.

² To be published.

³ To be published.