

Edition 1.0 2015-12

TECHNICAL SPECIFICATION

Industrial-process measurement, control and automation system interface between industrial facilities and the smart grid

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 25.040.40; 29.240.99; 35.100.05

ISBN 978-2-8322-3044-2

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FC	DREWO	RD	5
IN	TRODU	CTION	7
1	Scop	e	8
2	Norm	ative references	8
3	Term	s and definitions	9
	3.1	General	
	3.2	Models in automation	
	3.3	Models in energy management system and smart grid	
4	Abbre	eviations	
5		irements	
	5.1	General	
	5.2	Architecture requirements	
	5.2.1	General	
	5.2.2		
	5.3	System interface model between facility and smart grid	
	5.4	Security requirements	
	5.5	Safety requirements	22
	5.6	Communication requirements	22
	5.6.1	General	22
	5.6.2	Use of common communications technology	22
	5.6.3	Communication security requirements	22
	5.6.4	Network availability	22
	5.6.5	Time synchronization	23
	5.7	Audit logging requirements	23
	5.8	Information requirements	23
	5.8.1	General	23
	5.8.2	Information attributes	23
Ar	nex A (informative) User stories and use cases	30
	A.1	General	30
	A.2	User stories	30
	A.3	Use cases	32
	A.3.1	Use case analysis	32
	A.3.2	Actor names and roles	33
	A.3.3	•	34
		informative) An application example of demand response energy ent model	47
	B.1	General	47
	B.2	Main architecture	47
	B.3	Structure of a task	48
	B.4	Approaches of energy management	48
	B.4.1	General	48
	B.4.2	Approach 1	49
	B.4.3	Approach 2	49
	B.5	Mapping industrial demand response energy management model to use	
_	_	cases	
Ar	ınex C (normative) Security services	51

Annex D (informative) Solutions for information requirement	52
D.1 General	52
D.2 Existing standards	52
D.3 Analysis for each use case	53
D.3.1 General	
D.3.2 Analysis of "OpenADR2.0b"	
D.3.3 Analysis of "OASIS Energy Interoperation 1.0"	
D.3.4 Analysis of "NAESB Energy Services Provider Interface (ESPI)	•
D.3.5 Analysis of "ISO/WD 17800 Facility Smart Grid Information Mo (FSGIM)	
D.3.6 Analysis of "SEP 2.0 (IEEE P2030.5)"	
Bibliography	
Figure 1 – Overview of interface between FEMS and smart grid	15
Figure 2 – Example facility electric power distribution	16
Figure 3 – Facility enterprise and control systems	
Figure 4 – Model elements	
Figure 5 – Model architecture: (a) main architecture, (b) task structure	
Figure 6 – Network architecture model	
Figure A.1 – Generic communication diagram between the smart grid and the	
Figure A.2 — Sequence diagram for FG-100	
Figure A.3 – Sequence diagram for FG-200	
Figure A.4 – Sequence diagram for FG-300	
Figure A.5 – Sequence diagram for FG-400	
Figure A.6 – Sequence diagram for FG-500	
Figure A.7 – Sequence diagram for FG-600	44
Figure A.8 – Sequence diagram for FG-700	46
Figure B.1 – An application example of demand response energy manageme	nt model47
Figure B.2 – Structure of water cooling task	48
Figure D.1 – Interaction to register report	54
Figure D.2 – Interaction to request report	54
Figure D.3 – Simple setup exchange	55
Table 4. Described information	0.4
Table 1 – Required information	
Table A.1 – Facility user stories: facility manager view points	
Table A.2 – Utility user stories: utility operator view points	
Table A.3 – Dependency between user stories and use cases	
Table A.4 – Actors and roles	
Table A.5 – Exchanged information in FG-100	
Table A.6 – Exchanged information in FG-200	
Table A.7 – Exchanged information in FG-300	41
Table A.8 – Exchanged information in FG-400	42
Table A.9 – Exchanged information in FG-500	43
Table A.10 – Exchanged information in FG-600	45

Table A.11 – Exchanged information in FG-700	46
Table D.1 – Overview of existing standard applicability	52
Table D.2 – "ADR2.0b" applicability	53
Table D.3 – "OASIS Energy Interoperation 1.0" applicability	56
Table D.4 – "NAESB Energy Services Provider Interface (ESPI)" applicability	58
Table D.5 – "ISO/WD 17800 Facility Smart Grid Information Model" applicability	60
Table D.6 – "SEP 2.0 (IEEE P2030.5)" Applicability	61

INTERNATIONAL ELECTROTECHNICAL COMMISSION

INDUSTRIAL-PROCESS MEASUREMENT, CONTROL AND AUTOMATION SYSTEM INTERFACE BETWEEN INDUSTRIAL FACILITIES AND THE SMART GRID

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC TS 62872, which is a technical specification, has been prepared by IEC technical committee 65: Industrial-process measurement, control and automation.

The text of this technical specification is based on the following documents:

Enquiry draft	Report on voting
65/590/DTS	65/598/RVC

Full information on the voting for the approval of this technical specification can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A review of this Technical Specification will be carried out not later than 3 years after its publication with the options of: extension for another 3 years; conversion into an International Standard; or withdrawal."

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- transformed into an International standard,
- reconfirmed.
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

The World Energy Outlook 2013 [13]¹ reported that industry consumed over 40 % of world electricity generation in 2011. Furthermore, industry itself is a significant generator of internal power, with many facilities increasingly implementing their own generation, co-generation and energy storage resources. As a major energy consumer, the ability of some industries to schedule their consumption can be used to minimize peak demands on the electrical grid. As an energy supplier, industries with in-house generation or storage resources can also assist in grid load management. While some larger industrial facilities already manage their use and supply of electric power, more widespread deployment, especially by smaller facilities, will depend upon the availability of a readily available standard interface between industrial automation equipment and the "smart grid".

NOTE In this document "smart grid" is used to refer to the external-to-industry entity with which industry interacts for the purpose of energy management. In other documents this term may be used to refer to all of the elements, including internal industrial energy elements, which work together to optimize energy generation and use.

Standards are already being developed for home and building automation interfaces to the grid; however the requirements for industrial facilities differ significantly and are addressed in this Technical Specification. Specifically excluded from the scope of this Technical Specification are the protocols needed for the direct control of energy resources within a facility where the control and ultimate liability for such control is delegated by the industrial facility to the external entity.

Numbers in square brackets refer to the bibliography.

INDUSTRIAL-PROCESS MEASUREMENT, CONTROL AND AUTOMATION SYSTEM INTERFACE BETWEEN INDUSTRIAL FACILITIES AND THE SMART GRID

1 Scope

This Technical Specification defines the interface, in terms of information flow, between industrial facilities and the "smart grid". It identifies, profiles and extends where required, the standards needed to allow the exchange of the information needed to support the planning, management and control of electric energy flow between the industrial facility and the smart grid.

Industry is a major consumer of electric power and in many cases this consumption can be scheduled to assist in minimizing overall peak demands on the smart grid. In addition, many industrial facilities have in-house generation or storage resources which can also assist in smart grid load management. While some larger industrial facilities already manage their use and supply of electric power, more widespread deployment, especially by smaller facilities, will depend upon the availability of readily available standard automated interfaces.

Standards are already being developed for home and building automation interfaces to the smart grid; however the requirements of industry differ significantly and are addressed in this Technical Specification. For industry, the operation of energy resources within the facility will remain the responsibility of the facility operator. Incorrect operation of a resource could impact the safety of personnel, the facility, the environment or lead to production failure and equipment damage. In addition, larger facilities may have in-house production planning capabilities which might be co-ordinated with smart grid planning, to allow longer term energy planning.

Specifically excluded from the scope of this Technical Specification are the protocols needed for the direct control of energy resources within a facility where the control and ultimate liability for such direct control is delegated by the industrial facility to an external entity (e.g. distributed energy resource (DER) control by the electrical grid operator).

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 62264-1, Enterprise-control system integration - Part 1: Models and terminology

IEC 62264-3, Enterprise-control system integration - Part 3: Activity models of manufacturing operations management

IEC TS 62443-1-1, Industrial communication networks - Network and system security - Part 1-1: Terminology, concepts and models

IEC 62443-2-1, Industrial communication networks - Network and system security - Part 2-1: Establishing an industrial automation and control system security program

IEC TR 62443-3-1, Industrial communication networks - Network and system security - Part 3-1: Security technologies for industrial automation and control systems

IEC 62443-3-3, Industrial communication networks - Network and system security - Part 3-3: System security requirements and security levels