SVENSK STANDARD SS-EN 62366-1

Fastställd 2016-01-13

Utgåva 1 Sida 1 (1+52) Ansvarig kommitté SEK TK 62

© Copyright SEK. Reproduction in any form without permission is prohibited.

Medicintekniska produkter – Del 1: Tillämpning av metoder för att säkerställa medicintekniska produkters användarvänlighet

Medical devices -

Part 1: Application of usability engineering to medical devices

Som svensk standard gäller europastandarden EN 62366-1:2015. Den svenska standarden innehåller den officiella engelska språkversionen av EN 62366-1:2015.

Nationellt förord

Europastandarden EN 62366-1:2015*)

består av:

- europastandardens ikraftsättningsdokument, utarbetat inom CENELEC
- IEC 62366-1, First edition, 2015 Medical devices Part 1: Application of usability engineering to medical devices

utarbetad inom International Electrotechnical Commission, IEC.

Tidigare fastställd svensk standard SS-EN 62366, utgåva 1, 2008 och SS-EN 62366/A1, utgåva 1, 2015, gäller ej fr o m 2018-03-31.

ICS 11.040.00

Denna standard är fastställd av SEK Svensk Elstandard, som också kan lämna upplysningar om **sakinnehållet** i standarden. Postadress: Box 1284, 164 29 KISTA Telefon: 08 - 444 14 00. E-post: sek@elstandard.se. Internet: www.elstandard.se

^{*)} Corrigendum December 2015 till EN 62366-1:2015 är inarbetat i standarden.

Standarder underlättar utvecklingen och höjer elsäkerheten

Det finns många fördelar med att ha gemensamma tekniska regler för bl a mätning, säkerhet och provning och för utförande, skötsel och dokumentation av elprodukter och elanläggningar.

Genom att utforma sådana standarder blir säkerhetsfordringar tydliga och utvecklingskostnaderna rimliga samtidigt som marknadens acceptans för produkten eller tjänsten ökar.

Många standarder inom elområdet beskriver tekniska lösningar och metoder som åstadkommer den elsäkerhet som föreskrivs av svenska myndigheter och av EU.

SEK är Sveriges röst i standardiseringsarbetet inom elområdet

SEK Svensk Elstandard svarar för standardiseringen inom elområdet i Sverige och samordnar svensk medverkan i internationell och europeisk standardisering. SEK är en ideell organisation med frivilligt deltagande från svenska myndigheter, företag och organisationer som vill medverka till och påverka utformningen av tekniska regler inom elektrotekniken.

SEK samordnar svenska intressenters medverkan i SEKs tekniska kommittéer och stödjer svenska experters medverkan i internationella och europeiska projekt.

Stora delar av arbetet sker internationellt

Utformningen av standarder sker i allt väsentligt i internationellt och europeiskt samarbete. SEK är svensk nationalkommitté av International Electrotechnical Commission (IEC) och Comité Européen de Normalisation Electrotechnique (CENELEC).

Standardiseringsarbetet inom SEK är organiserat i referensgrupper bestående av ett antal tekniska kommittéer som speglar hur arbetet inom IEC och CENELEC är organiserat.

Arbetet i de tekniska kommittéerna är öppet för alla svenska organisationer, företag, institutioner, myndigheter och statliga verk. Den årliga avgiften för deltagandet och intäkter från försäljning finansierar SEKs standardiseringsverksamhet och medlemsavgift till IEC och CENELEC.

Var med och påverka!

Den som deltar i SEKs tekniska kommittéarbete har möjlighet att påverka framtida standarder och får tidig tillgång till information och dokumentation om utvecklingen inom sitt teknikområde. Arbetet och kontakterna med kollegor, kunder och konkurrenter kan gynnsamt påverka enskilda företags affärsutveckling och bidrar till deltagarnas egen kompetensutveckling.

Du som vill dra nytta av dessa möjligheter är välkommen att kontakta SEKs kansli för mer information.

SEK Svensk Elstandard

Box 1284 164 29 Kista Tel 08-444 14 00 www.elstandard.se

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 62366-1

April 2015

ICS 11.040

Supersedes EN 62366:2008 + A1:2015

English Version

Medical devices - Part 1: Application of usability engineering to medical devices (IEC 62366-1:2015)

Dispositifs médicaux - Partie 1: Application de l'ingénierie de l'aptitude à l'utilisation aux dispositifs médicaux (IEC 62366-1:2015)

Medizinprodukte - Anwendung der Gebrauchstauglichkeit auf Medizinprodukte (IEC 62366-1:2015)

This European Standard was approved by CENELEC on 2015-03-31. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

Foreword

The text of document 62A/977/FDIS, future edition 1 of IEC 62366-1, prepared by SC 62A, "Common aspects of electrical equipment used in medical practice", of IEC/TC 62 "Electrical equipment in medical practice" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 62366-1:2015.

The following dates are fixed:

•	latest date by which the document has to be implemented at national level by publication of an identical national standard or by endorsement	(dop)	2015-12-31
•	latest date by which the national standards conflicting with the document have to be withdrawn	(dow)	2018-03-31

This document supersedes EN 62366:2008 and A1:2015.

The contents of the corrigendum of December 2015 have been included in this copy.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 62366-1:2015 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

IEC 60601-1:2005	NOTE	Harmonized as EN 60601-1:2006.
IEC 60601-1:2005/A1:2012	NOTE	Harmonized as EN 60601-1:2006/A1:2013.
IEC 60601-1-6:2010	NOTE	Harmonized as EN 60601-1-6:2010.
IEC 60601-1-6:2010/A1:2013	NOTE	Harmonized as EN 60601-1-6:2010/A1:2013.
IEC 60601-1-8:2006	NOTE	Harmonized as EN 60601-1-8:2007.
IEC 60601-1-8:2006/A1:2012	NOTE	Harmonized as EN 60601-1-8:2007/A1:2013.
IEC 60601-1-11	NOTE	Harmonized as EN 60601-1-11.
ISO 7010:2011	NOTE	Harmonized as EN ISO 7010:2012.
ISO 9000:2005	NOTE	Harmonized as EN ISO 9000:2005.
ISO 9001:2008	NOTE	Harmonized as EN ISO 9001:2008.
ISO 9241-11:1998	NOTE	Harmonized as EN ISO 9241-11:1998.
ISO 13485:2003	NOTE	Harmonized as EN ISO 13485:2012.

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 When an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu.

<u>Publication</u>	<u>Year</u>	<u>Title</u>	EN/HD	<u>Year</u>
ISO 14971	2007	Medical devices - Application of risk	EN ISO 14971	2012
		management to medical devices		

CONTENTS

FOREWORD	4
INTRODUCTION	6
1 * Scope	7
2 Normative references	7
3 Terms and definitions	7
4 Principles	12
4.1 General requirements	
4.1.1 * USABILITY ENGINEERING PROCESS	
4.1.2 * RISK CONTROL as it relates to USER INTERFACE design	13
4.1.3 Information for SAFETY as it relates to USABILITY	13
4.2 * USABILITY ENGINEERING FILE	14
4.3 Tailoring of the USABILITY ENGINEERING effort	14
5 * USABILITY ENGINEERING PROCESS	14
5.1 * Prepare USE SPECIFICATION	14
5.2 * Identify USER INTERFACE characteristics related to SAFETY and potential USE ERRORS	15
5.3 * Identify known or foreseeable HAZARDS and HAZARDOUS SITUATIONS	15
5.4 * Identify and describe HAZARD-RELATED USE SCENARIOS	
5.5 * Select the HAZARD-RELATED USE SCENARIOS for SUMMATIVE EVALUATION	
5.6 * Establish user interface specification	
5.7 * Establish USER INTERFACE EVALUATION plan	
5.7.1 General	
5.7.2 * FORMATIVE EVALUATION planning	
5.7.3 * SUMMATIVE EVALUATION planning	17
5.8 * Perform USER INTERFACE design, implementation and FORMATIVE EVALUATION	18
5.9 * Perform SUMMATIVE EVALUATION of the USABILITY of the USER INTERFACE	
5.10 USER INTERFACE OF UNKNOWN PROVENANCE	
Annex A (informative) General guidance and rationale	20
A.1 General guidance	20
A.2 Rationale for requirements in particular clauses and subclauses	20
ANNEX B (informative) Examples of possible HAZARDOUS SITUATIONS related to USABILITY	38
Annex C (normative) Evaluation of a USER INTERFACE OF UNKNOWN PROVENANCE (UOUP)	41
C.1 General	41
C.2 USABILITY ENGINEERING PROCESS for USER INTERFACE OF UNKNOWN PROVENANCE	41
C.2.1 * USE SPECIFICATION	
C.2.2 * Review of POST-PRODUCTION information	42
C.2.3 HAZARDS and HAZARDOUS SITUATIONS related to USABILITY	42
C.2.4 RISK CONTROL	
C.2.5 Residual risk evaluation	
Annex D (informative) Types of MEDICAL DEVICE use, with examples	
Annex E (informative) Reference to the essential principles	45
Bibliography	46
Index of defined terms	49

Figure 1 – Relationship of the types of use	8
Figure A.1 – Model of USER-MEDICAL DEVICE interaction	24
Figure A.2 – Relationship of TASKS and functions within a USE SCENARIO	25
Figure A.3 – Relationship of TASKS and functions and USE ERROR within a HAZARD-RELATED USE SCENARIO	26
Figure A.4 – The relationship between the RISK MANAGEMENT PROCESS (ISO 14971:2007) and the USABILITY ENGINEERING PROCESS (IEC 62366-1)	32
Figure D.1 – Interrelationships between the different types of MEDICAL DEVICE use, with examples	44
Table B.1 – Glossary of relevant RISK MANAGEMENT terms	38
Table B.2 – Examples of HARM due to RISK caused by USE ERROR(S) or poor USABILITY (1 of 3)	38
Table E.1 – Correspondence between this document and the essential principles	45

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MEDICAL DEVICES -

Part 1: Application of usability engineering to medical devices

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62366-1 has been prepared by a joint working group of subcommittee 62A: Common aspects of electrical medical equipment used in medical practice, of IEC technical committee 62: Electrical medical equipment in medical practice, and ISO technical committee 210: Quality management and corresponding general aspects for MEDICAL DEVICES.

It is published as double logo standard.

This first edition of IEC 62366-1, together with the first edition of IEC 62366-2, cancels and replaces the first edition of IEC 62366 published in 2007 and its Amendment 1 (2014).

Part 1 has been updated to include contemporary concepts of USABILITY ENGINEERING, while also streamlining the process. It strengthens links to ISO 14971:2007 and the related methods of RISK MANAGEMENT as applied to SAFETY related aspects of medical device user interfaces. Part 2 contains tutorial information to assist manufactures in complying with Part 1, as well as offering more detailed descriptions of USABILITY ENGINEERING methods that can be applied

more generally to MEDICAL DEVICES that go beyond safety-related aspects of MEDICAL DEVICE USER INTERFACES.

The text of this standard is based on the following documents:

FDIS	Report on voting
62A/977/FDIS	62A/988/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table. In ISO, the standard has been approved by 26 P-members out of 26 having cast a vote.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

In this International Standard, the following print types are used:

- Requirements and definitions: roman type.
- Means to assess compliance: italic type.
- Informative material appearing outside of tables, such as notes, examples and references: in smaller type.
 Normative text of tables is also in a smaller type
- TERMS DEFINED IN CLAUSE 3 OR AS NOTED: SMALL CAPITALS.

The requirements are followed by means to assess compliance.

In this standard, the conjunctive "or" is used as an "inclusive or" so a statement is true if any combination of the conditions is true.

The verbal forms used in this standard conform to usage described in Annex H of the ISO/IEC Directives, Part 2. For the purposes of this standard, the auxiliary verb:

- "shall" means that compliance with a requirement or a test is mandatory for compliance with this standard;
- "should" means that compliance with a requirement or a test is recommended but is not mandatory for compliance with this standard;
- "may" is used to describe a permissible way to achieve compliance with a requirement or test.

Clauses and subclauses for which a rationale is provided in informative Annex A are marked with an asterisk (*).

A list of all parts of the IEC 62366 series, published under the general title *Medical devices*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

NOTE The attention of National Committees and Member Bodies is drawn to the fact that equipment manufacturers and testing organizations may need a transitional period following publication of a new, amended or revised IEC or ISO publication in which to make products in accordance with the new requirements and to equip themselves for conducting new or revised tests. It is the recommendation of the committee that the content of this publication be adopted for mandatory implementation nationally not earlier than 3 years from the date of publication.

INTRODUCTION

Medical practice is increasingly using MEDICAL DEVICES for observation and treatment of PATIENTS. USE ERRORS caused by inadequate MEDICAL DEVICE USABILITY have become an increasing cause for concern. Many of the MEDICAL DEVICES developed without applying a USABILITY ENGINEERING (HUMAN FACTORS ENGINEERING) PROCESS are non-intuitive, difficult to learn and difficult to use. As healthcare evolves, less skilled users including PATIENTS themselves are now using MEDICAL DEVICES and MEDICAL DEVICES are becoming more complicated. The design of the USER INTERFACE to achieve adequate USABILITY requires a different PROCESS and skill set than that of the technical implementation of the USER INTERFACE.

The USABILITY ENGINEERING PROCESS is intended to identify and minimise USE ERRORS and thereby reduce use-associated RISKS. Some, but not all, forms of incorrect use are suited to control by the MANUFACTURER. The USABILITY ENGINEERING PROCESS is related to the RISK MANAGEMENT PROCESS as indicated in Figure A.4.

This International Standard describes a USABILITY ENGINEERING PROCESS to provide acceptable RISK related to USABILITY of a MEDICAL DEVICE. It is intended to be useful not only for MANUFACTURERS of MEDICAL DEVICES, but also for technical committees responsible for the preparation of particular MEDICAL DEVICE standards.

This International Standard strictly focuses on applying the USABILITY ENGINEERING PROCESS to optimize MEDICAL DEVICE USABILITY as it relates to SAFETY. The companion technical report (IEC 62366-21) is comprehensive and has a broader focus. It focuses not only on USABILITY as it relates to SAFETY, but also on how USABILITY relates to attributes such as TASK accuracy, completeness and EFFICIENCY, and USER satisfaction.

NOTE SAFETY is freedom from unacceptable RISK. Unacceptable RISK can arise from USE ERROR, which can lead to exposure to direct physical HAZARDS or loss or degradation of clinical functionality.

MANUFACTURERS can choose to implement a USABILITY ENGINEERING program focused narrowly on SAFETY or more broadly on SAFETY and other attributes, such as those cited above. A broader focus might also be useful to address specific USABILITY ENGINEERING expectations, such as the need to confirm that USERS can successfully perform non-SAFETY-related TASKS. A MANUFACTURER might also implement a broader program to realize the commercial benefits of a MEDICAL DEVICE that not only is safe to use but also offers superior USABILITY.

¹ IEC 62366-2, Medical devices – Part 2: Guidance on the application of usability engineering to medical devices (in preparation).

MEDICAL DEVICES -

Part 1: Application of usability engineering to medical devices

1 * Scope

This part of IEC 62366 specifies a PROCESS for a MANUFACTURER to analyse, specify, develop and evaluate the USABILITY of a MEDICAL DEVICE as it relates to SAFETY. This USABILITY ENGINEERING (HUMAN FACTORS ENGINEERING) PROCESS permits the MANUFACTURER to assess and mitigate RISKS associated with CORRECT USE and USE ERRORS, i.e., NORMAL USE. It can be used to identify but does not assess or mitigate RISKS associated with ABNORMAL USE.

NOTE 1 SAFETY is freedom from unacceptable RISK. Unacceptable RISK can arise from USE ERROR, which can lead to exposure to direct physical HAZARDS or loss or degradation of clinical functionality.

NOTE 2 Guidance on the application of USABILITY ENGINEERING to MEDICAL DEVICES is available in IEC 62366-2², which addresses not only SAFETY but also aspects of USABILITY not related to SAFETY.

If the USABILITY ENGINEERING PROCESS detailed in this International Standard has been complied with, then the USABILITY of a MEDICAL DEVICE as it relates to SAFETY is presumed to be acceptable, unless there is OBJECTIVE EVIDENCE to the contrary.

NOTE 3 Such OBJECTIVE EVIDENCE can subsequently originate from POST-PRODUCTION surveillance.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 The way in which these referenced documents are cited in normative requirements determines the extent (in whole or in part) to which they apply.

NOTE 2 Informative references are listed in the bibliography beginning on page 46.

ISO 14971:2007, Medical devices – Application of risk management to medical devices

² IEC 62366-2, Medical devices – Part 2: Guidance on the application of usability engineering to medical devices (in preparation).