

Edition 1.0 2018-08

TECHNICAL REPORT

Land usage of photovoltaic (PV) farms – Mathematical models and calculation examples

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 27.160

ISBN 978-2-8322-5793-7

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWO	DRD	5
INTROD	JCTION	7
1 Sco	pe	8
2 Norr	native references	9
3 Tern	ns and definitions	9
4 Azin	nuth and hour angle coordinates	. 11
5 Coo	rdinate systems (Figures 3 to 6)	13
5 1	Ground Horizontal Coordinates (GHC)	13
5.1	Equatorial Coordinates (EC)	14
6 Bou	ndary conditions	. 15
7 Land	d use calculations for fixed PV arrays on flat land (Figure 7)	18
7 1	Boundary conditions	18
7.1	Calculation models for the fixed PV arrays on flat land	18
7.3	Example of land usage for fixed PV arrays on flat land	19
8 Spe	cial consideration of non-south direction and sloped land	.20
8.1	General	.20
8.2	Boundary conditions	.20
8.3	Calculation models	.21
8.4	Example for fixed PV arrays with non-south direction	.22
8.5	Example for fixed PV arrays on sloped land	.23
9 Land	d usage for solar altitude tracking in ground horizontal coordinates (Figures 10	
and	11)	.24
9.1	Boundary conditions	.25
9.2	Calculation models for solar altitude tracking	.27
9.3	Example of land usage for 4-times adjustment	.27
10 Land	d usage calculation for horizontal <i>E-W</i> tracking in equatorial coordinates	20
(i igi 10.1	Doundary conditions	.29
10.1	Calculation models	.29
10.2	Example – I and usage for horizontal $F-W$ tracking	.29
11 Lano	d usage for pole-axis tracking (Figure 16)	31
11 1	Boundary conditions	32
11.1	The calculation for <i>E</i> - <i>W</i> distance	. 32
11.3	The calculation for <i>S</i> - <i>N</i> distance	
11.4	Example 1: no-shading distance is set within 75 % day length on winter	
	solstice	. 33
11.5	Example 2: no-shading period is from 9:00am to 3:00pm on winter solstice	.34
11.6	Example 3: Calculation for high-efficiency PV modules	.35
11.7	Land usage for pole-axis tracking	.36
12 Land	d usage calculation for double-axis tracking in equatorial coordinates (Figure 17)	.38
12.1	Boundary conditions	. 38
12.2	Calculation model for <i>E</i> - <i>W</i> distance	.38
12.3	Caculation for <i>S</i> - <i>N</i> distance	. 39
12.4	Example 1: no-shading distance is set within 75 % day length on winter solstice	∆ 1
12.5	Example 2: no-shading period is from 9:00am to 3:00pm on winter solstice	. 41
. 2.0		

	12.6	Land usage for equatorial double-axis tracking	42		
13	3 Land usage calculation for tilted <i>E</i> - <i>W</i> tracking				
	13.1	Boundary conditions	43		
	13.2	Why optimized <i>S</i> - <i>N</i> tilt is equal to 1/2 latitude	43		
	13.3	The calculation model for <i>E</i> - <i>W</i> distance	44		
	13.4	Example of <i>E</i> - <i>W</i> distance calculation	44		
	13.5	The calculation model for <i>S</i> - <i>N</i> distance	45		
	13.6	Example of <i>S</i> - <i>N</i> distance calculation	47		
	13.7	Land usage of tilted <i>E-W</i> tracking	47		
14	Land (Figu	usage calculation of double-axis tracking in ground horizontal coordinates re 23)	48		
	14.1	Boundary conditions	48		
	14.2	Calculation model for <i>S</i> - <i>N</i> distance	48		
	14.3	Example 1: calculation for $S-N$ distance at 75 % day-length on winter solstice	50		
	14.4	Example 2: calculation for <i>S-N</i> distance at 9:00am on winter solstice (Table 7)	00		
			51		
	14.5	Example of <i>E</i> - <i>W</i> distance calculation	52		
4 5	14.6	Land usage for horizontal double-axis tracking	53		
15	Land (Figu	re 25)	54		
	15.1	Boundary conditions	54		
	15.2	Calculation model for S-N distance	54		
	15.3	Example 1: calculation for <i>S</i> - <i>N</i> distance at 75 % day-length on winter solstice (Table 8)	55		
	15.4	Example 2: calculation for S-N distance at 9:00am on winter solstice (Table 9)	56		
	15.5	Example of <i>E</i> - <i>W</i> distance calculation	57		
	15.6	Land usage for horizontal azimuth tracking	58		
16	Array	length and width ratio	59		
17	Sumi	mary of calculation results (Table 12)	62		
18	Back	tracking technology	63		
	18.1	General	63		
	18.2	<i>E-W</i> tracking in equatorial coordinates	64		
	18.3	Double axis tracking in ground horizontal coordinates	68		
An	nex A (informative) Acronyms and abbreviated terms	73		
Fig	ure 1 -	- Current definition of azimuth and hour angle coordinates	12		
Fic	, iure 2 -	- Definition of azimuth and hour angle coordinates for this document	12		
Fic	, iure 3 -	- PV array in ground horizontal coordinates	13		
Fic	ure 4 -	- PV array in equatorial coordinates	14		
Fic	Figure 4 – r v array in equatorial coordinates				
Fic	Figure 6 – Relationship between $A = 0$ and ∞				
Figure 7 – Fixed PV array on flat land					
Fic	Figure 8 – Relationship of solar beam and PV array 10^{-1}				
Figure 9 – Relationship of solar beam and PV array and the distance between arrays 21					
Figure 10 – Manual adjusted supporting structure 24					
Figure 11 Manual adjusted DV array					
Figure 11 – Manual adjusted PV array					

Figure 12 – 2 times adjustment rules	26
Figure 13 – 4 times adjustment rules	27
Figure 14 – Horizontal <i>E-W</i> tracking	29
Figure 15 – Horizontal <i>E-W</i> tracking	30
Figure 16 – Pole-axis tracking	31
Figure 17 – Double tracking systems (hour-angle and solar declination)	38
Figure 18 – PV array and solar beam for double-axis tracking	40
Figure 19 – Tilted <i>E-W</i> tracking (horizontal main axis)	43
Figure 20 – <i>E</i> - <i>W</i> distance for tilted <i>E</i> - <i>W</i> tracking	44
Figure 21 – The relationship between PV array and solar beam	46
Figure 22 – <i>S</i> - <i>N</i> distance between PV modules	46
Figure 23 – Double axis-tracking in ground gorizontal coordinates	48
Figure 24 – Distance items relevent with no-shading distance calculation	49
Figure 25 – Solar azimuth tracking (fixed PV tilt)	54
Figure 26 – Array configuration for horizontal double tracking	59
Figure 27 – Back tracking for <i>E</i> - <i>W</i> tracking	64
Figure 28 – No-shading between PV arrays by back tracking technology	65
Figure 29 – Back tracking for horizontal double-axis tracking	69
Table 1 – No-shading set time on winter solstice for various latitudes	16
Table 2 – Date and time when solar altitude is 20° and the sun is in the east	16
Table 3 – Proposed boundary conditions	17
Table 4 – Adjustment rules for solar altitude tracking	26
Table 5 – Annual average incidence angle for different latitudes and different tilts	44
Table 6 – S-N distances calculation at 75 % day length on winter solstice	51
Table 7 – S-N distances calculation at 9:00am on winter solstice	52
Table 8 – S-N distances calculation for azimuth tracking at 75 % day length	56
Table 9 – Distances calculation from the set time to noon time	57
Table 10 – Length and width ratio effect for 3 scenarios	60
Table 11 – Summary of 3 scenarios	61
Table 12 – Summary of the calculated results	62
Table 13 – Back tracking tilt calculation for E-W tracking on winter solstice	67
Table 14 – Back tracking tilt calculation for E-W tracking on spring equinox	68
Table 15 – Back tracking tilt calculation for D-tracking on winter solstice	71
Table 16 – Back tracking tilt calculation for D-tracking on spring equinox	72

INTERNATIONAL ELECTROTECHNICAL COMMISSION

LAND USAGE OF PHOTOVOLTAIC (PV) FARMS – MATHEMATICAL MODELS AND CALCULATION EXAMPLES

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

IEC TR 63149, which is a technical report, has been prepared by IEC technical committee 82: Solar photovoltaic energy systems.

The text of this technical report is based on the following documents:

Enquiry draft	Report on voting
82/1319/DTR	82/1411/RVDTR

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- 6 -

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

It is very important to calculate the land usage of PV power plants. If the plant is poorly designed, it would result in either a waste of land due to too large an area, or the loss of power generation because of shading between arrays. This TR gives a simple calculation for a quick guideline of the land usage of PV farms. For accurate and optimum land usage design, a more sophisticated numerical computation is encouraged.

The key factor to affect land usage of PV plants is the distance between PV arrays. The calculation of the distance between PV arrays is affected by the following factors:

- Sun-Earth relationship;
- solar declination angle (determining the date of a year);
- solar hour angle (determining the time of a day);
- latitude of the location of PV plant;
- azimuth of PV array;
- tilted angle of PV array;
- flat land or tilted land;
- efficiency of PV modules;
- mounting and tracking arrangements if used (e.g. fixed, single-axis tracking, double-axis tracking);
- the coordinates system (ground horizontal coordinates, equatorial coordinates);
- the ratio of length and width of PV array, and
- the possible maximum mechanical tilted angle of PV array, etc.

Increased land usage comes with power generation. To maximise generation and minimise land usage has many advantages including decreasing cost.

LAND USAGE OF PHOTOVOLTAIC (PV) FARMS – MATHEMATICAL MODELS AND CALCULATION EXAMPLES

1 Scope

This document is aimed at building mathematical models for calculation of the distance between arrays, to farthest avoid shading and reasonably reduce the land usage of PV farms.

In general, there will be longest south-north shading on the day of the winter solstice. The boundary condition to calculate the south-north (S-N) distance between PV arrays used in this document is based on winter solstice. The longest east-west (E-W) shading is on the time when the sun is in the east. The users can change the boundary conditions (date and time) depending on local conditions (latitude, land limitation, facing direction, etc.), the formulas are all the same.

The shading distance calculation is based on date and time boundaries, not based on shading energy losses that may be very complicated. The no-shading distance calculation in this document is only for the distance between PV arrays, not for other surrounding objects, but the formula can also be used to calculate the no-shading distance between the objects and PV arrays. Where shading occurs on the PV array site other calculations are required that are not within the scope of this document. The no-shading distance calculation is based on the northern hemisphere in this document, but all fomulas can also be used for the southern hemisphere.

The no-shading calculation model is different for fixed PV arrays and PV systems with solar trackers. This document derives mathematical models for both fixed PV arrays and solar trackers.

For solar trackers, there are 2 different coordination systems: the Ground Horizontal Coordinates (*GHC*) and Equatorial Coordinates (*EC*).

This document provides land usage calculations of PV farms for the following array types:

- Fixed PV array on flat-land and face to the south
- Fixed PV array on flat-land and face to non-south direction
- Fixed PV array on tilted land and face to the south
- Horizontal *E*-*W* tracking in Equatorial Coordinates
- Tilted *E*-*W* tracking in Equatorial Coordinates
- Pole-Axis tracking in Equatorial Coordinates
- Double tracking in Equatorial Coordinates
- Solar Azimuth tracking in ground horizontal coordinates
- Manual solar altitude tracking in ground horizontal coordinates
- Double tracking in ground horizontal coordinates

In the following clauses, the different coordinates systems are introduced and the land usage calculations for different operational models are provided.

IEC TR 63149:2018 © IEC 2018 - 9 -

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC TS 62727:2012, Photovoltaic systems – Specification for solar trackers