

Edition 1.0 2018-11

INTERNATIONAL STANDARD

Sound system equipment – Part 21: Acoustical (output-based) measurements

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 33.160.01

ISBN 978-2-8322-6176-7

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FC	DREWO	RD	8
IN	TRODU	CTION	10
1	Scop	e	11
2	Norm	ative references	11
3	Term	s, definitions and abbreviated terms	12
	3.1	· Terms and definitions	
	3.2	Abbreviated terms	
4	-	description	
5		cal characteristics	
-	5.1	Marking of terminals and controls	
	5.2	Dimensions	
	5.3	Mass	
	5.4	Connectors and cable assemblies	
6	Desig	ın data	13
7	Cond	itions	13
	7.1	Rated conditions	13
	7.2	Climatic conditions	
	7.3	Normal measuring conditions	13
8	Test	signals	14
	8.1	General	14
	8.2	Sinusoidal chirp	14
	8.3	Steady-state single-tone signal	15
	8.4	Steady-state two-tone signal	15
	8.5	Sparse multi-tone complex	15
	8.6	Broadband noise signal	16
	8.7	Narrow-band noise signal	16
	8.8	Hann-burst signal	16
	8.9	Impulsive signal	
9	Acou	stical environment	17
	9.1	General	
	9.2	Free-field conditions	
	9.3	Half-space, free-field conditions	
	9.4	Simulated free-field conditions	
	9.5	Half-space simulated free-field conditions	
	9.6	Diffuse sound field conditions	
10	9.7	Target application conditions	
10		ioning of the DUT	
	10.1	Rated geometrical conditions	
	10.1.	-	
	10.1.: 10.1.:		
	10.1.	•	
	10.1.		
	10.1.		
	10.1.	•	
			-

	10.2 Mea	asuring distance between DUT and microphone	.20
	10.2.1	Far-field conditions	.20
	10.2.2	Near-field conditions	.20
	10.2.3	Diffuse field conditions	
	10.2.4	Target application condition	.21
11	Measurer	nent equipment and test results	.21
12	Accuracy	of the acoustical measurement	.21
	12.1 Ger	neral	.21
	12.2 Mea	asurement uncertainty	.21
13	Mounting	of the DUT	. 22
	13.1 Mou	Inting and acoustic loading of drive units	.22
	13.2 Mou	Inting and acoustic loading of an electro-acoustic system	.22
14	Precondit	ioning	.23
15	Rated am	bient conditions	.23
	15.1 Ten	nperature ranges	.23
	15.1.1	Performance limited temperature range	
	15.1.2	Damage limited temperature range	
	15.2 Hun	nidity ranges	
	15.2.1	Relative humidity range	
	15.2.2	Damage limited humidity range	
16		quency range	
17		nal	
.,		ed maximum input value	
	17.1 Rau 17.1.1	Condition to be specified	
	17.1.1	Direct measurement	
	17.1.2		
		Indirect measurement based on <i>SPL</i> max kimum input level	
10		essure output	
10		•	
		ed maximum sound pressure	
	18.1.1		
	18.1.2	Direct measurement	
	18.1.3	Indirect measurement based on maximum input value	
		ed maximum sound-pressure level	
		rt term maximum sound pressure level	
	18.3.1	Conditions to be specified	
	18.3.2	Method of measurement	
		g term maximum sound pressure level	
	18.4.1 18.4.2	Conditions to be specified	
		Method of measurement	
		nd pressure in a stated frequency band	
	18.5.1 18.5.2	Condition to be specified Method of measurement	
		nd-pressure level in a stated frequency band	
		an sound-pressure in a stated frequency range Condition to be specified	
	18.7.1 18.7.2	Method of measurement	
	-	an sound-pressure level in a stated frequency range	
	10.0 10168	an sound-pressure lever in a stated nequency failige	. 30

19 Frequen	cy response of the fundamental component	30
19.1 Tra	Insfer function	
19.1.1	Conditions to be specified	
19.1.2	Method of measurements	
19.2 SP	L frequency response	
19.2.1	Conditions to be specified	
19.2.2	Method of measurement	
19.3 Tin	ne-varying amplitude compression of the fundamental component	
19.3.1	General	
19.3.2	Method of measurement	
19.4 Am	plitude compression at maximum input	
19.4.1	Short term amplitude compression	
19.4.2	Method of measurement	
19.4.3	Long-term amplitude compression	
19.4.4	Method of measurement	
19.5 Co	rrections based on a free-field reference measurement	34
19.5.1	General	
19.5.2	Correction of the measured sound pressure signal	34
19.5.3	Correction of the amplitude response	35
19.6 Eff	ective frequency range	
19.6.1	Conditions to be specified	
19.6.2	Method of measurement	
19.7 Inte	ernal latency	36
19.7.1	Conditions to be specified	
19.7.2	Methods of measurement	
20 Directior	al characteristics	37
20.1 Ge	neral	37
20.2 Dir	ect sound field in 3D space	
20.2.1	Directional transfer function	
20.2.2	Extrapolated far-field data	37
20.2.3	Parameters of the holographic sound field expansion	
20.2.4	Extrapolated near-field data	
20.3 Dir	ectional far field characteristics	
20.3.1	Directional factor	
20.3.2	Directional gain	41
20.3.3	Directivity factor	41
20.3.4	Directivity index	41
20.4 Ac	oustic output power	42
20.4.1	Conditions to be specified	42
20.4.2	Methods of measurement	42
20.5 So	und power level	44
20.6 Me	an acoustic output power in a frequency band	44
20.6.1	Conditions to be specified	44
20.6.2	Method of measurement	44
20.7 Ra	diation angle	44
20.7.1	Conditions to be specified	44
20.7.2	Method of measurement	44

20.	8 Co	verage angle or angles	45
2	0.8.1	Conditions to be specified	45
2	0.8.2	Method of measurement	45
20.	9 Me	an sound pressure level in an acoustical zone	
2	0.9.1	General	
2	0.9.2	Method of measurement	45
21 H		c distortion	
21.		neral	
21.	2 N th	l-order harmonic component	46
2	1.2.1	Conditions to be specified	46
—	1.2.2	Method of measurement	
21.	3 To	al harmonic components	47
2	1.3.1	Conditions to be specified	
2	1.3.2	Method of measurement	47
21.	4 To	al harmonic distortion	
_	1.4.1	Conditions to be specified	
2	1.4.2	Method of measurement	
21.	-	her-order harmonic distortion	
	1.5.1	Conditions to be specified	
_	1.5.2	Method of measurement	
21.		ximum sound pressure level limited by total harmonic distortion	
	1.6.1	Conditions to be specified	
_	1.6.2	Method of measurement	
21.		-order equivalent input harmonic distortion component	
	1.7.1	Conditions to be specified	
	1.7.2	Method of measurement	
21.		uivalent input total harmonic distortion	
_	1.8.1	Conditions to be specified	
_	1.8.2	Method of measurement	
		e distortion	
22.		riation of excitation frequencies	
22.	2 Mo	dulation distortion	
2	2.2.1	Conditions to be specified	
2	2.2.2	Method of measurement	
22.		plitude modulation distortion	
	2.3.1	Conditions to be specified	
	2.3.2	Method of measurement	
23 M	lulti-ton	e distortion	54
23.	1 Co	nditions to be specified	54
23.	2 Me	thod of measurement	55
24 In	npulsiv	e distortion	55
24.	1 Im	pulsive distortion level	55
24	4.1.1	Conditions to be specified	55
24	4.1.2	Method of measurement	56
24.	2 Ma	ximum impulsive distortion ratio	56
24	4.2.1	Conditions to be specified	56
24	4.2.2	Method of measurement	

24.3 Mean impulsive distortion level	57
24.3.1 Conditions to be specified	57
24.3.2 Method of measurement	57
24.4 Crest factor of impulsive distortion	57
24.4.1 Conditions to be specified	
24.4.2 Method of measurement	
25 Stray magnetic fields	
25.1 General	
25.2 Static component	
25.2.1 Characteristic to be specified	
25.2.2 Method of measurement	
25.3 Dynamic components	
25.3.1 Characteristics to be specified25.3.2 Method of measurement	
Annex A (informative) Uncertainty analysis	
Annex B (normative) Transducer mounting	
B.1 Standard baffle	
B.2 Standard measuring enclosures	
B.2.1 General	
B.2.2 Type A B.2.3 Type B	
Annex C (normative) Simulated programme signal	
Annex D (informative) Rating the maximum input and output values	
Annex E (informative) Spherical wave expansion	
E.1 Coefficients of spherical wave expansion	
E.2 Directional factor	
E.3 Directivity factor	
E.4 Acoustic output power	
Annex F (informative) Non-linearity	
F.1 Equivalent harmonic input distortion	
F.2 Two-tone intermodulation	
F.3 Signal distortion generated in audio systems	
Annex G (informative) Stray magnetic field	
Bibliography	76
Figure 1 – Rated conditions used to describe the position of the DUT in the coordinate system	18
Figure 2 – Recommended position and orientation of the DUT	19
Figure 3 – Valid region of expansion of the sound pressure $p(\mathbf{r})$ at the observation point \mathbf{r} at the distance $r > a$	39
Figure 4 – Measurement of the distortion generated by a multi-tone stimulus	55
Figure 5 – Measurement of impulsive distortion	
Figure A.1 – Relationship between tolerance limits, corresponding acceptance	
intervals and the maximum permitted uncertainty of measurement, U_{MAX}	60
Figure B.1 – Standard baffle, dimensions	
Figure B.2 – Standard baffle with chamfer	
U	

IEC 60268-21:2018 © IEC 2018 - 7 -

Figure B.4 – Standard measuring enclosure type A (net volume is about 600 I)	64
Figure B.5 – Standard measuring enclosure type B (net volume is about 450 I)	65
Figure C.1 – Block diagram of test setup for generating the simulated noise signal used for testing passive loudspeaker systems comprising a network filter	66
Figure F.1 – Signal flow chart of the electro-acoustical system	72
Figure F.2 – Variation of the frequencies of the two-tone stimulus in the intermodulation measurement	73
Figure F.3 – Generation of the signal distortion in audio systems	73
Figure G.1 – Measuring apparatus for stray magnetic field	75
Table A.1 – Example uncertainty budget – acoustical loudspeaker evaluation	61
Table C.1 – Power spectrum of simulated programme signal in 1/3 octave bandsrated	67

- 8 -

INTERNATIONAL ELECTROTECHNICAL COMMISSION

SOUND SYSTEM EQUIPMENT -

Part 21: Acoustical (output-based) measurements

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60268-21 has been prepared by IEC technical committee 100: Audio, video and multimedia systems and equipment.

The text of this standard is based on the following documents:

CDV	Report on voting
100/2957/CDV	100/3019/RVC

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 60628, published under the general title *Sound system equipment*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

- 10 -

Loudspeakers, headphones and other actuators have become more versatile and, as a result, new measurement techniques are required to evaluate these systems. The following is a list of examples where new measurement techniques are required:

• Limited access to the electrical terminals of the transducer

The higher integration of electrical, acoustical and mechanical elements limit the access to the electrical terminals of the transducer.

• Analogue or digital audio input signals

Audio inputs can accept analogue or digital signals in various formats.

• Latency and other kinds of distortion associated with digital signal processing

Digital signal processing is used to correct the transfer behaviour of the passive system and to generate a desired sound output and as a result, latency and other kinds of distortion not found in analogue equipment can be generated.

Excessive equalization

Excessive equalization can force the transducer to operate in the large signal domain causing thermal and nonlinear effects.

Active protection

Active protection attenuates the input signal to prevent a mechanical and thermal overload of the transducer and other components.

• Other transducer principles

Although most loudspeaker systems use a moving coil in an electro-dynamical transducer, there is a need to expand the application to electro-static, electro-magnetic or any other transduction principles.

• Other mechanical and acoustical elements

To improve sound radiation, vented enclosures, sealed enclosures, passive radiators, horns, wave guides, flat panels, and other mechanical and acoustical elements are implemented.

• Impulsive distortions

Defects in manufacturing (e.g. voice coil rubbing) or operating under overload conditions can create impulsive distortions, which have a high impact on perceived sound quality but cannot be detected by conventional measurements (e.g. total harmonic distortion).

• Directional characteristics and complex near field properties

The comprehensive evaluation of professional equipment, including directional characteristics, can be realized by considering the complex near-field properties as a supplement to the existing far-field measurement techniques. In addition, devices intended for use in the near field, such as hand-held personal audio devices (e.g. laptops, tablets, smart phones) and other portable sound systems, need to be evaluated in a manner appropriate to their intended use.

SOUND SYSTEM EQUIPMENT -

Part 21: Acoustical (output-based) measurements

1 Scope

This part of IEC 60268 specifies an acoustical measurement method that applies to electroacoustical transducers and passive and active sound systems, such as loudspeakers, TV-sets, multi-media devices, personal portable audio devices, automotive sound systems and professional equipment. The device under test (DUT) can be comprised of electrical components performing analogue and digital signal processing prior to the passive actuators performing a transduction of the electrical input into an acoustical output signal. This document describes only physical measurements that assess the transfer behaviour of the DUT between an arbitrary analogue or digital input signal and the acoustical output at any point in the near and far field of the system. This includes operating the DUT in both the small and large signal domains. The influence of the acoustical boundary conditions of the target application (e.g. car interior) can also be considered in the physical evaluation of the sound system. This document does not assess the perception and cognitive evaluation of the reproduced sound and the impact of perceived sound quality.

NOTE Some measurement methods defined in this document can be applied to headphones, headsets, earphones and earsets in accordance with [1]¹. This document does not apply to microphones and other sensors. This document does not require access to the state variables (voltage, current) at the electrical terminals of the transducer. Sensitivity, electric input power and other characteristics based on the electrical impedance will be described in a separate future standard document, IEC 60268-22, dedicated to electrical and mechanical measurements.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60263, Scales and sizes for plotting frequency characteristics and polar diagrams

IEC 60268-1, Sound system equipment – Part 1: General

IEC 60268-2:1987, Sound system equipment – Part 2: Explanation of general terms and calculation methods

IEC 61094-4, Measurement microphones – Part 4: Specifications for working standard microphones

IEC 61260-1, Electroacoustics – Octave-band and fractional-octave-band filters – Part 1: Specifications

ISO 3, *Preferred numbers* – Series of preferred numbers

ISO 3741:2010, Acoustics – Determination of sound power levels and sound energy levels of noise sources using sound pressure – Precision methods for reverberation test rooms

¹ Numbers in square brackets refer to the Bibliogaphy.

ISO 3744, Acoustics – Determination of sound power levels and sound energy levels of noise sources using sound pressure – Engineering methods for an essentially free field over a reflecting plane

ISO 3745, Acoustics – Determination of sound power levels and sound energy levels of noise sources using sound pressure – Precision methods for anechoic rooms and hemi-anechoic rooms

CTA 2034-A, Standard Method of Measurement for In-Home Loudspeakers, Consumer Technology Association (Formerly CEA), 02/01/2015

CTA 2010-B, Standard Method of Measurement for Powered Subwoofers, standard by Consumer Technology Association (Formerly CEA), 11/28/2014