Fastställd 2019-03-13 Utgåva 1 1 (1+18) Ansvarig kommitté SEK Elektrotekniska rådet © Copyright SEK Svensk Elstandard. Reproduction in any form without permission is prohibited. ### Elektronikkomponenter – Långtidslagring av halvledarkomponenter – Del 6: Kapslade eller färdiga komponenter Electronic components – Long-term storage of electronic semiconductor devices – Part 6: Packaged or finished devices Som svensk standard gäller europastandarden EN IEC 62435-6:2018. Den svenska standarden innehåller den officiella engelska språkversionen av EN IEC 62435-6:2018. ### Nationellt förord Europastandarden EN IEC 62435-6:2018 består av: - europastandardens ikraftsättningsdokument, utarbetat inom CENELEC - IEC 62435-6, First edition, 2018 Electronic components Long-term storage of electronic semiconductor devices - Part 6: Packaged or finished devices utarbetad inom International Electrotechnical Commission, IEC. ICS 31.020.00 ### Standarder underlättar utvecklingen och höjer elsäkerheten Det finns många fördelar med att ha gemensamma tekniska regler för bl a mätning, säkerhet och provning och för utförande, skötsel och dokumentation av elprodukter och elanläggningar. Genom att utforma sådana standarder blir säkerhetsfordringar tydliga och utvecklingskostnaderna rimliga samtidigt som marknadens acceptans för produkten eller tjänsten ökar. Många standarder inom elområdet beskriver tekniska lösningar och metoder som åstadkommer den elsäkerhet som föreskrivs av svenska myndigheter och av EU. ### SEK är Sveriges röst i standardiseringsarbetet inom elområdet SEK Svensk Elstandard svarar för standardiseringen inom elområdet i Sverige och samordnar svensk medverkan i internationell och europeisk standardisering. SEK är en ideell organisation med frivilligt deltagande från svenska myndigheter, företag och organisationer som vill medverka till och påverka utformningen av tekniska regler inom elektrotekniken. SEK samordnar svenska intressenters medverkan i SEKs tekniska kommittéer och stödjer svenska experters medverkan i internationella och europeiska projekt. ### Stora delar av arbetet sker internationellt Utformningen av standarder sker i allt väsentligt i internationellt och europeiskt samarbete. SEK är svensk nationalkommitté av International Electrotechnical Commission (IEC) och Comité Européen de Normalisation Electrotechnique (CENELEC). Standardiseringsarbetet inom SEK är organiserat i referensgrupper bestående av ett antal tekniska kommittéer som speglar hur arbetet inom IEC och CENELEC är organiserat. Arbetet i de tekniska kommittéerna är öppet för alla svenska organisationer, företag, institutioner, myndigheter och statliga verk. Den årliga avgiften för deltagandet och intäkter från försäljning finansierar SEKs standardiseringsverksamhet och medlemsavgift till IEC och CENELEC. ### Var med och påverka! Den som deltar i SEKs tekniska kommittéarbete har möjlighet att påverka framtida standarder och får tidig tillgång till information och dokumentation om utvecklingen inom sitt teknikområde. Arbetet och kontakterna med kollegor, kunder och konkurrenter kan gynnsamt påverka enskilda företags affärsutveckling och bidrar till deltagarnas egen kompetensutveckling. Du som vill dra nytta av dessa möjligheter är välkommen att kontakta SEKs kansli för mer information. SEK Svensk Elstandard Box 1284 164 29 Kista Tel 08-444 14 00 www.elstandard.se ### EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM **EN IEC 62435-6** October 2018 ICS 31.020 ### **English Version** # Electronic components - Long-term storage of electronic semiconductor devices - Part 6: Packaged or finished devices (IEC 62435-6:2018) Composants électroniques - Stockage de longue durée des dispositifs électroniques à semiconducteurs - Partie 6: Dispositifs encapsulés ou finis (IEC 62435-6:2018) Elektronische Bauteile - Langzeitlagerung elektronischer Halbleiterbauelemente - Teil 6: Bauelemente in Gehäusen oder fertiggestellte Bauelemente (IEC 62435-6:2018) This European Standard was approved by CENELEC on 2018-10-03. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels © 2018 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members. ### **European foreword** The text of document 47/2482/FDIS, future edition 1 of IEC 62435-6, prepared by IEC/TC 47 "Semiconductor devices" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 62435-6:2018. The following dates are fixed: - latest date by which the document has to be implemented at national level by publication of an identical national standard or by endorsement - latest date by which the national standards conflicting with the document have to be withdrawn (dow) 2021-10-03 Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights. ### **Endorsement notice** The text of the International Standard IEC 62435-6:2018 was approved by CENELEC as a European Standard without any modification. In the official version, for Bibliography, the following notes have to be added for the standards indicated: | IEC 60721-3-1 | NOTE | Harmonized as EN IEC 60721-3-1 | |--------------------------|------|--------------------------------| | IEC 62435-1 | NOTE | Harmonized as EN 62435-1 | | IEC 62435-2 | NOTE | Harmonized as EN 62435-2 | | IEC 62435-31 | NOTE | Harmonized as EN IEC 62435-32 | | IEC 62435-4 | NOTE | Harmonized as EN IEC 62435-4 | | IEC 62435-5 | NOTE | Harmonized as EN 62435-5 | | IEC 62435-7 ³ | NOTE | Harmonized as EN IEC 62435-74 | | IEC 62435-85 | NOTE | Harmonized as EN IEC 62435-86 | 2 ¹ Under preparation. Stage at the time of publication: IEC/CCDV 62435-3:2018. ² Under preparation. Stage at the time of publication: prEN IEC 62435-3:2018. ³ Under preparation. Stage at the time of publication: IEC/CD 62435-7:2018. ⁴ Under preparation. Stage at the time of publication: prEN IEC 62435-7:2018. ⁵ Under preparation. Stage at the time of publication: IEC/CD 62435-8:2018. ⁶ Under preparation. Stage at the time of publication: prEN IEC 62435-8:2018. ### **Annex ZA** (normative) # Normative references to international publications with their corresponding European publications The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies. NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu. | <u>Publication</u> | <u>Year</u> | <u>Title</u> | EN/HD | <u>Year</u> | |--------------------|-------------|--|------------|-------------| | IEC 60749-20 | - | Semiconductor devices - Mechanical and climatic test methods - Part 20: Resistance of plastic encapsulated SMDs to the combined effect of moisture and soldering heat | e
e | - | | IEC 60749-20-1 | - | Semiconductor devices - Mechanical and EN 60749-20-1 climatic test methods - Part 20-1: Handling, packing, labelling and shipping of surface-mount devices sensitive to the combined effect of moisture and soldering heat | | - | | JEDEC J-STD-020 |) - | Moisture/reflow classification for nonhermetic solid state surface moundevices | or -
ot | - | | JEDEC J-STD-075 | ; - | Classification of non-IC electroni components for assembly processes | C - | - | ### CONTENTS | FOREWORD | 3 | |--|-------| | INTRODUCTION | 5 | | 1 Scope | 7 | | 2 Normative references | 7 | | 3 Terms and definitions | 7 | | 4 Storage considerations | 9 | | 4.1 Failure mechanisms | | | 4.1.1 Occurrence of failure and driving force | | | 4.1.2 Storage environment and mitigation for stimuli to prevent failure | | | 4.2 Materials management | | | 4.3 Storage media | 11 | | 4.4 Inventory check | 11 | | 4.5 Inventory dry packing refreshing | 12 | | 4.6 Inventory re-assessment | 12 | | 5 Baseline long-term storage requirements | 12 | | 5.1 General | 12 | | 5.1.1 Categories | 12 | | 5.1.2 Critical aspects | 12 | | 5.1.3 Recommendations and best practice | 12 | | 5.2 Non-moisture sensitive device storage | 13 | | 5.2.1 Storage media | 13 | | 5.2.2 Lot data and labelling | 13 | | 5.3 Moisture sensitive finished device storage | 13 | | 5.3.1 Moisture sensitivity designation | 13 | | 5.3.2 Dry packing for storage | 13 | | 5.3.3 Moisture barrier bag | | | 5.3.4 Dunnage | 13 | | 5.3.5 Humidity indicator card – HIC | 14 | | 5.3.6 Desiccant | | | 5.3.7 Labelling | 14 | | 5.4 Storage environment | | | 5.5 Process (temperature) sensitivity designation | 14 | | Annex A (informative) Packaged or finished device storage environment | 15 | | considerations | | | Bibliography | 16 | | Table 1 – Example failure mechanisms in storage and stimuli to mitigate during sto | rageº | | Table 2 – Long-term environment – Sustained condition requirements | _ | | Table 3 – Considerations for management, control and documentation during stora | | | Table A.1 – Long-term storage environment – Sustained condition considerations | • | ### INTERNATIONAL ELECTROTECHNICAL COMMISSION ____ # ELECTRONIC COMPONENTS – LONG-TERM STORAGE OF ELECTRONIC SEMICONDUCTOR DEVICES – ### Part 6: Packaged or finished devices ### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. - 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 62435-6 has been prepared by IEC technical committee 47: Semi-conductor devices. The text of this International Standard is based on the following documents: | FDIS | Report on voting | | |--------------|------------------|--| | 47/2482/FDIS | 47/2495/RVD | | Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table. This document has been drafted in accordance with the ISO/IEC Directives, Part 2. A list of all parts in the IEC 62435 series, published under the general title *Electronic components – Long-term storage of electronic semiconductor devices*, can be found on the IEC website. The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be - · reconfirmed, - withdrawn, - replaced by a revised edition, or - amended. ### INTRODUCTION This document applies to the long-term storage of electronic components. This is a standard for long-term storage (LTS) of electronic devices drawing on the best long-term storage practices currently known. For the purposes of this standard, LTS is defined as any device storage whose duration can be more than 12 months for product scheduled for long duration storage. While intended to address the storage of unpackaged semiconductors and packaged electronic devices, nothing in this document precludes the storage of other items under the storage levels defined herein. Although it has always existed to some extent, obsolescence of electronic components and particularly of integrated circuits, has become increasingly intense over the last few years. Indeed, with the existing technological boom, the commercial life of a component has become very short compared with the life of industrial equipment such as that encountered in the aeronautical field, the railway industry or the energy sector. The many solutions enabling obsolescence to be resolved are now identified. However, selecting one of these solutions should be preceded by a case-by-case technical and economic feasibility study, depending on whether storage is envisaged for field service or production, for example: - remedial storage as soon as components are no longer marketed; - preventive storage anticipating declaration of obsolescence. Taking into account the expected life of some installations, sometimes covering several decades, the qualification times, and the unavailability costs, which can also be very high, the solution to be adopted to resolve obsolescence should often be rapidly implemented. This is why the solution retained in most cases consists in systematically storing components which are in the process of becoming obsolescent. The technical risks of this solution are, a priori, fairly low. However, it requires perfect mastery of the implemented process and especially of the storage environment, although this mastery becomes critical when it comes to long-term storage. All handling, protection, storage and test operations are recommended to be performed according to the state of the art. The application of the approach proposed in this document in no way guarantees that the stored components are in perfect operating condition at the end of this storage. It only comprises a means of minimizing potential and probable degradation factors. Some electronic device users have the need to store electronic devices for long periods of time. Lifetime buys are commonly made to support production runs of assemblies that well exceed the production timeframe of its individual parts. This puts the user in a situation requiring careful and adequate storage of such parts to maintain the as-received solderability and minimize any degradation effects to the part over time. Major degradation concerns are moisture, electrostatic fields, ultraviolet light, large variations in temperature, air-borne contaminants, and outgassing. Warranties and sparing also present a challenge for the user or repair agency as some systems have been designated to be used for long periods of time, in some cases for up to 40 years or more. Some of the devices needed for repair of these systems will not be available from the original component manufacturer for the lifetime of the system or the spare assembly can be built with the original production run but then requires long-term storage. This document was developed to provide a standard for storing electronic devices for long periods of time. For storage of devices that are moisture sensitive but that do not need to be stored for long periods of time, IEC TR 62258-3 can be consulted. Long-term storage assumes that the device is going to be placed in uninterrupted storage for a number of years. It is essential that it is useable after storage. Particular attention should be paid to storage media surrounding the devices together with the local environment. These guidelines do not imply any warranty of product or guarantee of operation beyond the storage time given by the original component manufacturer. The IEC 62435 series is intended to ensure that adequate reliability is achieved for devices in user applications after long-term storage. Users are encouraged to request data from suppliers to applicable specifications to demonstrate a successful storage life as requested by the user. These standards are not intended to address built-in failure mechanisms that would take place regardless of storage conditions. These standards are intended to give practical guide to methods of long-duration storage of electronic components where this is intentional or planned storage of product for a number of years. Storage regimes for work-in-progress production are managed according to company internal process requirements and are not detailed in this series of standards. The overall standard is split into a number of parts. Parts 1 to 4 apply to any long-term storage and contain general requirements and guidance, whereas Parts 5 to 9 specific to the type of product being stored. It is intended that the product specific part should be read alongside the general requirements of Parts 1 to 4. Electronic components requiring different storage conditions are planned to be covered separately starting with Part 5. The structure of the IEC 62435 series as currently conceived is as follows: - Part 1 General - Part 2 Deterioration mechanisms - Part 3 Data - Part 4 Storage - Part 5 Die and wafer devices - Part 6 Packaged or finished devices - Part 7 MEMS - Part 8 Passive electronic devices - Part 9 Special cases ## ELECTRONIC COMPONENTS – LONG-TERM STORAGE OF ELECTRONIC SEMICONDUCTOR DEVICES – ### Part 6: Packaged or finished devices ### 1 Scope This part of IEC 62435 on long-term storage applies to packaged or finished devices in long-term storage that can be used as part of obsolescence mitigation strategy. Long-term storage refers to a duration that can be more than 12 months for product scheduled for storage. Philosophy, good working practice, and general means to facilitate the successful long-term storage of electronic components are also addressed. ### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC 60749-20, Semiconductor devices – Mechanical and climatic test methods – Part 20: Resistance of plastic encapsulated SMDs to the combined effect of moisture and soldering heat IEC 60749-20-1, Semiconductor devices – Mechanical and climatic test methods – Part 20-1: Handling, packing, labelling and shipping of surface-mount devices sensitive to the combined effect of moisture and soldering heat JEDEC J-STD-020, Moisture/reflow classification for nonhermetic solid state surface mount devices JEDEC J-STD-075, Classification of non-IC electronic components for assembly processes