

SVENSK STANDARD SS-EN IEC 61400-21-1

FastställdUtgåvaSidaAnsvarig kommitté2020-01-2811 (1+146)SEK TK 88

© Copyright SEK Svensk Elstandard. Reproduction in any form without permission is prohibited.

Vindkraftverk – Del 21-1: Mätning och bedömning av elektriska egenskaper – Vindturbiner

Wind energy generation systems – Part 21-1: Measurement and assessment of electrical characteristics – Wind turbines

Som svensk standard gäller europastandarden EN IEC 61400-21-1:2019. Den svenska standarden innehåller den officiella engelska språkversionen av EN IEC 61400-21-1:2019.

Nationellt förord

Europastandarden EN IEC 61400-21-1:2019

består av:

- europastandardens ikraftsättningsdokument, utarbetat inom CENELEC
- IEC 61400-21-1, First edition, 2019 Wind energy generation systems Part 21-1: Measurement and assessment of electrical characteristics Wind turbines

utarbetad inom International Electrotechnical Commission, IEC.

Denna standard är fastställd av SEK Svensk Elstandard, som också kan lämna upplysningar om **sakinnehållet** i standarden. Postadress: Box 1284, 164 29 KISTA Telefon: 08 - 444 14 00. E-post: sek@elstandard.se. Internet: www.elstandard.se

Standarder underlättar utvecklingen och höjer elsäkerheten

Det finns många fördelar med att ha gemensamma tekniska regler för bl a mätning, säkerhet och provning och för utförande, skötsel och dokumentation av elprodukter och elanläggningar.

Genom att utforma sådana standarder blir säkerhetsfordringar tydliga och utvecklingskostnaderna rimliga samtidigt som marknadens acceptans för produkten eller tjänsten ökar.

Många standarder inom elområdet beskriver tekniska lösningar och metoder som åstadkommer den elsäkerhet som föreskrivs av svenska myndigheter och av EU.

SEK är Sveriges röst i standardiseringsarbetet inom elområdet

SEK Svensk Elstandard svarar för standardiseringen inom elområdet i Sverige och samordnar svensk medverkan i internationell och europeisk standardisering. SEK är en ideell organisation med frivilligt deltagande från svenska myndigheter, företag och organisationer som vill medverka till och påverka utformningen av tekniska regler inom elektrotekniken.

SEK samordnar svenska intressenters medverkan i SEKs tekniska kommittéer och stödjer svenska experters medverkan i internationella och europeiska projekt.

Stora delar av arbetet sker internationellt

Utformningen av standarder sker i allt väsentligt i internationellt och europeiskt samarbete. SEK är svensk nationalkommitté av International Electrotechnical Commission (IEC) och Comité Européen de Normalisation Electrotechnique (CENELEC).

Standardiseringsarbetet inom SEK är organiserat i referensgrupper bestående av ett antal tekniska kommittéer som speglar hur arbetet inom IEC och CENELEC är organiserat.

Arbetet i de tekniska kommittéerna är öppet för alla svenska organisationer, företag, institutioner, myndigheter och statliga verk. Den årliga avgiften för deltagandet och intäkter från försäljning finansierar SEKs standardiseringsverksamhet och medlemsavgift till IEC och CENELEC.

Var med och påverka!

Den som deltar i SEKs tekniska kommittéarbete har möjlighet att påverka framtida standarder och får tidig tillgång till information och dokumentation om utvecklingen inom sitt teknikområde. Arbetet och kontakterna med kollegor, kunder och konkurrenter kan gynnsamt påverka enskilda företags affärsutveckling och bidrar till deltagarnas egen kompetensutveckling.

Du som vill dra nytta av dessa möjligheter är välkommen att kontakta SEKs kansli för mer information.

SEK Svensk Elstandard

Box 1284 164 29 Kista Tel 08-444 14 00 www.elstandard.se

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN IEC 61400-21-1

July 2019

ICS 27.180

English Version

Wind energy generation systems - Part 21-1: Measurement and assessment of electrical characteristics - Wind turbines (IEC 61400-21-1:2019)

Systèmes de génération d'énergie éolienne - Partie 21-1: Mesurage et évaluation des caractéristiques électriques -Éoliennes (IEC 61400-21-1:2019) Windenergieerzeugungsanlagen - Teil 21-1: Messung und Bewertung der elektrischen Kennwerte -Windenergieanlagen (IEC 61400-21-1:2019)

This European Standard was approved by CENELEC on 2019-06-24. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2019 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

Ref. No. EN IEC 61400-21-1:2019 E

European foreword

The text of document 88/711/FDIS, future edition 1 of IEC 61400-21-1, prepared by IEC/TC 88 "Wind energy generation systems" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 61400-21-1:2019.

The following dates are fixed:

- latest date by which the document has to be implemented at national level by (dop) 2020-03-24 publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting with the (dow) 2022-06-24 document have to be withdrawn

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 61400-21-1:2019 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following note has to be added for the standard indicated:

IEC 61400-27-1:2015 NOTE Harmonized as EN 61400-27-1:2015 (not modified)

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies. NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: <u>www.cenelec.eu</u>.

Publication	Year	Title	<u>EN/HD</u>	Year
IEC 61000-3-2	2014	Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions (equipment input current ≤ 16 A per phase)	EN 61000-3-2	2014
IEC 61000-3-3	-	Electromagnetic compatibility (EMC) - Part 3-3: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current < 16 A per phase and not subject to conditional connection	EN 61000-3-3	-
IEC 61000-4-7	2002	Electromagnetic compatibility (EMC) - Part 4-7: Testing and measurement techniques - General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto	EN 61000-4-7	2002
+ A1	2008		+ A1	2009
IEC 61000-4-15	2010	Electromagnetic compatibility (EMC) - Part 4-15: Testing and measurement techniques - Flickermeter - Functional and design specifications	EN 61000-4-15	2011
IEC 61000-4-30	-	Electromagnetic compatibility (EMC) - Part 4-30: Testing and measurement techniques - Power quality measurement methods	EN 61000-4-30	-
IEC 62008	-	Performance characteristics and calibration methods for digital data acquisition systems and relevant software	EN 62008	-
IEC/TR 61000- 3-6	-	Electromagnetic compatibility (EMC) - Part 3-6: Limits - Assessment of emission limits for the connection of distorting installations to MV, HV and EHV power systems	-	-
IEC/TR 61000- 3-7:2008	-	Electromagnetic compatibility (EMC) - Part 3-7: Limits - Assessment of emission limits for the connection of fluctuating installations to MV, HV and EHV power systems	-	-
IEC/TR 61000- 3-14	-	Electromagnetic compatibility (EMC) - Part 3-14: Assessment of emission limits for harmonics, interharmonics, voltage fluctuations and unbalance for the connection of disturbing installations to LV power systems	-	-
IEC/TR 61869- 103	2012	Instrument transformers - The use of instrument transformers for power quality measurement	-	-

CONTENTS

FC	DREWO	RD	10
IN	TRODU	CTION	12
1	Scop	e	13
2	Norm	ative references	13
3	Term	s and definitions	14
4	Symb	ools and units	25
5	•	eviated terms	
6		turbine specification	
7		conditions and test systems	
'	7.1	General	
	7.2	Overview of required test levels	
	7.3	Test validity	
	7.4	Test conditions	
	7.5	Test equipment	
8	Meas	urement and test of electrical characteristics	32
	8.1	General	32
	8.2	Power quality aspects	32
	8.2.1	General	32
	8.2.2	Flicker during continuous operation	32
	8.2.3	Flicker and voltage change during switching operations	35
	8.2.4		
	8.3	Steady-state operation	
	8.3.1	General	
	8.3.2		
	8.3.3	•	
	8.3.4		
	8.3.5		
	8.3.6 8.3.7		
		Control performance	
	8.4.1	General	
	8.4.2	Active power control	
	8.4.3	•	
	8.4.4		
	8.4.5	Synthetic inertia	
	8.4.6	Reactive power control	55
	8.5	Dynamic performance	58
	8.5.1	General	58
	8.5.2	Fault ride-through capability	58
	8.6	Disconnection from grid	66
	8.6.1	General	
	8.6.2		
	8.6.3		
	8.6.4		
Ar		informative) Reporting	
	A.1	Overview	72

A.2	General	72
A.3	Power quality aspects	74
A.4	Steady-state operation	83
A.5	Dynamic performance (see 8.5)	101
A.6	Disconnection from grid (see 8.6)	106
Annex B	(informative) Voltage fluctuations and flicker	110
B.1	Continuous operation	110
B.2	Switching operations	110
B.3	Verification test of the measurement procedure for flicker	111
B.3.1	I General	111
B.3.2	2 Fictitious grid performance testing	112
B.3.3	B Distorted um(t) voltage with multiple zero crossings	113
B.3.4	Distorted <i>u</i> m(<i>t</i>) voltage with inter-harmonic modulation	113
B.3.5	5 Slow frequency changes	114
B.4	Deduction of definitions	114
B.4.1	I Flicker coefficient	114
B.4.2	2 Flicker step factor	115
B.4.3	3 Voltage change factor	116
Annex C	(normative) Measurement of active power, reactive power and voltage	117
C.1	General	117
C.2	Generator convention of the signs	117
C.3	Calculation of positive, negative and zero sequence quantities	118
C.3.1	1 Phasor calculations	118
C.3.2		
	components	121
C.3.3	3 Calculation of the negative sequence quantities using phasor components	122
C.3.4	·	
Annex D	(informative) Harmonic evaluation	
D.1	General	125
D.2	General analysis methods	
D.2.1		
D.2.2	2 Harmonic voltages	125
D.2.3	-	
D.2.4		
D.2.5	-	
D.2.6	6 Determination of background harmonic voltage distortion	129
D.2.7	•	
D.2.8	-	
D.2.9		
D.2.1		
D.2.1	Measuring at a standard source	132
D.2.1		
D.2.1		
D.2.1		
D.2.1	15 Harmonic model	134
D.3	Determination of harmonic amplitude affected by space harmonics at DFAG	
	systems	134

Annex E (informative) Assessment of power quality of wind turbines and wind power plants	136
E.1 General	
E.2 Voltage fluctuations	
E.2.1 General	136
E.2.2 Continuous operation	137
E.2.3 Switching operations	
E.3 Current harmonics, interharmonics and higher frequency components	138
Annex F (informative) Guidelines for the transferability of test results to different turbine variants in the same product platform	140
Bibliography	144
Figure 1 – Example of step response	22
Figure 2 – Measurement system description including the most significant components.	31
Figure 3 – Fictitious grid for simulation of fictitious voltage	
Figure 4 – Active power as a function of the wind speed (example)	
Figure 5 – Number of measurements in power bins (example)	
Figure 6 – Number of measurements in wind speed bins (example)	
Figure 7 – Example of PQ capability diagram for a given voltage at WT level	
Figure 8 – Adjustment of active power reference value	
Figure 9 – Example of active power response step	
Figure 10 – Example of available active power and active power in ramp rate limitation modefigue.	
Figure 11 – Example of an active power control function $P=f(f)$, with the different	
measurement points and related steps of frequency	52
Figure 12 – Synthetic inertia – definitions	55
Figure 13 – Test for static error	56
Figure 14 – Test of dynamic response (example)	57
Figure 15 – Example UVRT test equipment	59
Figure 16 – Tolerances of the positive sequence voltage for the undervoltage event with disconnected WT under test	60
Figure 17 – Tolerance of positive sequence overvoltage event	
Figure 18 – Example OVRT capacitor test unit	
Figure 19 – Example of an undervoltage test chart	
Figure 20 – Example of an overvoltage capability curve	
Figure 21 – Example of step ramp for overvoltage or frequency testing	
Figure 22 – Example of pulse ramp for over voltage or frequency testing	
Figure 23 – Example of the test levels to determine the release time	
Figure A.1 – Voltage flicker P_{st} vs. active power	
Figure A.2 – Flicker coefficient $c(30^{\circ})$ vs. active power	
Figure A.3 – Flicker coefficient $c(50^{\circ})$ vs. active power	
Figure A.4 – Flicker coefficient $c(70^{\circ})$ vs. active power	
Figure A.5 – Flicker coefficient $c(85^{\circ})$ vs. active power	
Figure A.6 – Time series of 3-phase voltages as RMS of start-up at the wind speed	70
of m/s	76

Figure A.7 – Time series of 3-phase currents as RMS of start-up at the wind speed of m/s	76
Figure A.8 – Time series of active and reactive power of start-up at the wind speed of m/s	76
Figure A.9 – Time series of 3-phase voltages as RMS of start-up at the wind speed of m/s	77
Figure A.10 – Time series of 3-phase currents as RMS of start-up at the wind speed of m/s	77
Figure A.11 – Time series of active and reactive power of start-up at the wind speed of m/s	77
Figure A.12 – Time series of 3-phase voltages as RMS of change from generator stage 1 to stage 2	78
Figure A.13 – Time series of 3-phase currents as RMS of change from generator stage 1 to stage 2	78
Figure A.14 – Time series of active and reactive power of change from generator stage 1 to stage 2	78
Figure A.15 – Time series of 3-phase voltages as RMS of change from generator stage 2 to stage 1	78
Figure A.16 – Time series of 3-phase currents as RMS of change from generator stage 2 to stage 1	78
Figure A.17 – Time series of active and reactive power of change from generator stage 2 to stage 1	79
Figure A.18 – Max. of the 95 th percentiles of integer harmonic currents vs. harmonic order	83
Figure A.19 – Max. of the 95 th percentiles of interharmonic currents vs. frequency	83
Figure A.20 – Max. of the 95 th percentiles of higher frequency current components vs. frequency	83
frequency	84
frequency Figure A.21 – Active power as a function of the wind speed	84 85
frequency Figure A.21 – Active power as a function of the wind speed Figure A.22 – Reactive power vs. active power	84 85 86
frequency Figure A.21 – Active power as a function of the wind speed Figure A.22 – Reactive power vs. active power Figure A.23 – PQ-Diagram	84 85 86 87
frequency Figure A.21 – Active power as a function of the wind speed Figure A.22 – Reactive power vs. active power Figure A.23 – PQ-Diagram Figure A.24 – PQ-Diagram.	84 85 86 87 88
frequency Figure A.21 – Active power as a function of the wind speed Figure A.22 – Reactive power vs. active power Figure A.23 – PQ-Diagram Figure A.24 – PQ-Diagram. Figure A.25 – PQ-Diagram.	84 85 86 87 88 89
frequency Figure A.21 – Active power as a function of the wind speed Figure A.22 – Reactive power vs. active power Figure A.23 – PQ-Diagram Figure A.24 – PQ-Diagram Figure A.25 – PQ-Diagram Figure A.26 – Mean 1-min current unbalance factor over active power Figure A.27 – Time-series of active power reference values, available power and measured active power output during active power control for the evaluation of the	84 85 86 87 88 89 89
frequency Figure A.21 – Active power as a function of the wind speed Figure A.22 – Reactive power vs. active power Figure A.23 – PQ-Diagram Figure A.24 – PQ-Diagram Figure A.25 – PQ-Diagram Figure A.26 – Mean 1-min current unbalance factor over active power Figure A.27 – Time-series of active power reference values, available power and measured active power output during active power control for the evaluation of the static error Figure A.28 – Time-series of measured wind speed during active power control during	84 85 86 87 88 89 89 89
frequency Figure A.21 – Active power as a function of the wind speed Figure A.22 – Reactive power vs. active power Figure A.23 – PQ-Diagram Figure A.24 – PQ-Diagram Figure A.25 – PQ-Diagram Figure A.26 – Mean 1-min current unbalance factor over active power Figure A.27 – Time-series of active power reference values, available power and measured active power output during active power control for the evaluation of the static error Figure A.28 – Time-series of measured wind speed during active power control during the test of the static error Figure A.29 – Time-series of active power reference values, available power and measured active power output during active power control for the evaluation of the	84 85 86 87 88 89 89 89 89
frequency Figure A.21 – Active power as a function of the wind speed Figure A.22 – Reactive power vs. active power Figure A.23 – PQ-Diagram Figure A.24 – PQ-Diagram Figure A.25 – PQ-Diagram Figure A.26 – Mean 1-min current unbalance factor over active power Figure A.27 – Time-series of active power reference values, available power and measured active power output during active power control for the evaluation of the static error Figure A.28 – Time-series of measured wind speed during active power control during the test of the static error Figure A.29 – Time-series of active power reference values, available power and measured active power output during active power control for the evaluation of the static error Figure A.29 – Time-series of active power reference values, available power and measured active power output during active power control for the evaluation of the settling time Figure A.30 – Time-series of available and measured active power output during ramp	84 85 86 87 89 89 89 89 89 90
frequency Figure A.21 – Active power as a function of the wind speed Figure A.22 – Reactive power vs. active power Figure A.23 – PQ-Diagram Figure A.24 – PQ-Diagram Figure A.25 – PQ-Diagram Figure A.26 – Mean 1-min current unbalance factor over active power Figure A.27 – Time-series of active power reference values, available power and measured active power output during active power control for the evaluation of the static error Figure A.28 – Time-series of measured wind speed during active power control during the test of the static error. Figure A.29 – Time-series of active power reference values, available power and measured active power output during active power control for the evaluation of the static error. Figure A.29 – Time-series of active power reference values, available power and measured active power output during active power control for the evaluation of the settling time. Figure A.30 – Time-series of available and measured active power output during ramp rate limitation	84 85 86 87 88 89 89 89 89 90 90 91
frequency Figure A.21 – Active power as a function of the wind speed Figure A.22 – Reactive power vs. active power Figure A.23 – PQ-Diagram Figure A.24 – PQ-Diagram Figure A.25 – PQ-Diagram Figure A.26 – Mean 1-min current unbalance factor over active power Figure A.27 – Time-series of active power reference values, available power and measured active power output during active power control for the evaluation of the static error Figure A.28 – Time-series of measured wind speed during active power control during the test of the static error Figure A.29 – Time-series of active power reference values, available power and measured active power output during active power control for the evaluation of the static error Figure A.29 – Time-series of active power reference values, available power and measured active power output during active power control for the evaluation of the settling time Figure A.30 – Time-series of available and measured active power output during ramp rate limitation Figure A.31 – Time-series of available and measured active power output during ramp Figure A.32 – Time-series of available and measured active power output during ramp	84 85 86 87 88 89 89 89 89 90 90 91

- 6 - IEC 61400-21-1:2019 © IEC 2019

Figure A.35 – Time-series of measured wind speed during ramp rate limitation	92
Figure A.36 – Time-series of available and measured active power output during ramp rate limitation	93
Figure A.37 – Time-series of measured wind speed during ramp rate limitation	93
Figure A.38 – Time-series of available power, measured active power and reference value of the grid frequency change	94
Figure A.39 – Time-series of measured wind speed	94
Figure A.40 – Measured active power over frequency change	94
Figure A.41 – Time-series of available power, measured active power and reference value of the grid frequency change	95
Figure A.42 – Time-series of measured wind speed	95
Figure A.43 – Measured active power over frequency change	95
Figure A.44 – Test 1, time-series of available power, measured active power and reference value of the grid frequency for $0.25 \times P_n < P < 0.5 \times P_n$	96
Figure A.45 – Test 1, time-series of wind speed for 0,25 × $P_{n} < P < 0,5 \times P_{n}$	96
Figure A.46 – Test 2, time-series of available power, measured active power and reference value of the grid frequency for $0.25 \times P_n < P < 0.5 \times P_n$	97
Figure A.47 – Test 2, time-series of wind speed for 0,25 × $P_{n} < P < 0,5 \times P_{n}$	97
Figure A.48 – Test 3, time-series of available power, measured active power and reference values of the grid frequency for $P > 0.8 \times P_n$	97
Figure A.49 – Test 3, time-series of wind speed for $P > 0.8 \times P_n$	97
Figure A.50 – Test 4, time-series of available power, measured active power and reference value of the grid frequency for $P > 0.8 \times P_n$	97
Figure A.51 – Test 4, time-series of wind speed for $P > 0.8 \times P_n$	98
Figure A.52 – Test 5, time-series of available power, measured active power and reference value of the grid frequency for $v > v_n$	98
Figure A.53 – Test 5, time-series of wind speed for $v > v_n$	98
Figure A.54 – Test 6, time-series of available power, measured active power and reference value of the grid frequency for $v > v_n$	98
Figure A.55 – Test 6, time-series of wind speed for $v > v_n$	98
Figure A.56 – Time-series of reactive power reference values and measured reactive power during the test of reactive power control	99
Figure A.57 – Time-series of active power during the test of reactive power control	99
Figure A.58 – Time-series of reactive power reference values and measured reactive power during the test of reactive power dynamic response	100
Figure A.59 – Time-series of active power during the test of reactive power dynamic response.	100
Figure A.60 – Wave shape of 3-phase voltages during entrance of voltage dip/swell when the WT under test is not connected	101
Figure A.61 – Wave shape of 3-phase voltages during clearance of voltage dip/swell when the WT under test is not connected	102
Figure A.62 – 3-phase voltages as RMS (1 line period) during the test when the WT under test is not connected	102
Figure A.63 – Positive sequence voltage during the test when the WT under test is not connected	102
Figure A.64 – Wave shape of 3-phase voltages during entrance of the voltage dip/swell when the WT under test is connected	104
Figure A.65 – Wave shape of 3-phase voltages during clearance of the voltage dip/swell when the WT under test is connected	104

Figure A.66 – 3-phase voltages as RMS (1 line period) during the test when the WT under test is connected	104
Figure A.67 – Positive and negative sequence fundamental voltage during the test when the WT under test is connected	104
Figure A.68 – 3-phase currents as RMS (1 line period) during the test when the WT under test is connected	104
Figure A.69 – Pos. and neg. sequence fundamental current during the test when the WT under test is connected	105
Figure A.70 – Pos. sequence fundamental active power during the test when the WT under test is connected	105
Figure A.71 – Pos. sequence fundamental reactive power during the test when the WT under test is connected	105
Figure A.72 – Pos. sequence fundamental active current during the test when the WT under test is connected	105
Figure A.73 – Pos. sequence fundamental reactive current during the test when the WT under test is connected	105
Figure A.74 – Wind speed or available power during the test when the WT under test is connected	106
Figure A.75 – Voltage during the reconnection test of 10 s	107
Figure A.76 – Active power during the reconnection test of 10 s, including the recovery	107
Figure A.77 – Time-series of measured wind speed during the reconnection test of 10 s	
Figure A.78 – Voltage during the reconnection test of 60 s	108
Figure A.79 – Active power during the reconnection test of 60 s, including the recovery	
Figure A.80 – Time-series of measured wind speed during the reconnection test of 60 s	
Figure A.81 – Voltage during the reconnection test of 600 s	108
Figure A.82 – Active power during the reconnection test of 600 s including the recovery	109
Figure A.83 – Time-series of measured wind speed during the reconnection test of 600 s	109
Figure B.1 – Measurement procedure for flicker during continuous operation of the wind turbine	110
Figure B.2 – Measurement procedure for voltage changes and flicker during switching operations of the wind turbine	111
Figure C.1 – Positive directions of active power, reactive power, instantaneous phase voltages and instantaneous phase currents with generator convention	117
Figure C.2 – Examples of the power phasor diagrams of the generator convention in each quadrant with respective instantaneous phase voltage and current	118
Figure D.1 – Definition of the phase angles of the spectral line in generator convention – (5th harmonic with α I5 = + 120° and α U5 = + 170°shown as an example, thus 5th harmonic phase angle is φ 5 = + 170° – 120° = + 50°)	126
Figure D.2 – Comparison of harmonic amplitude aggregation (dotted) no aggregated amplitude directly from DFT with 10-cycle window, (dashed) 10-second aggregation	127
Figure D.3 – Comparison of the prevailing angle ratio (PAR)	128
Figure F.1 – Block diagram for generic wind turbine (source IEC 61400-27-1)	141
Table 1 – Overview of required test levels	28
Table 2 – Specification of requirements for measurement equipment	
Table 3 – Number of 10-min time-series per wind speed bin	

Table 4 – Number of measurements per power bin (10 min average)41

Table 5 – Measured maximum active power values	43
Table 6 – Accuracy of the active power control values	49
Table 7 – Results from the active power reference test	49
Table 8 – Active power ramp rate calculation	51
Table 9 – Example of Settings for the frequency dependent active power function	53
Table 10 – Test for static error	58
Table 11 – Test for dynamic response	58
Table 12 – Example of undervoltage events	63
Table 13 – Example of overvoltage tests	65
Table 14 – Grid protection tests	67
Table A.1 – General report information	72
Table A.2 – General data	73
Table A.3 – Nominal data	73
Table A.4 – Test conditions	73
Table A.5 – Flicker coefficient per power bin (95 th percentile)	74
Table A.6 – Start-up at cut in wind speed	75
Table A.7 – Start-up at nominal active power	76
Table A.8 – Worst-case switching between generators	77
Table A.9 – General test information	79
Table A.10 – 95 th percentile of 10-min harmonic magnitudes per power bin	79
Table A.11 – 95 th percentile of 10-min harmonic magnitudes per power bin	81
Table A.12 – 95 th percentile of 10-min harmonic magnitudes per power bin	82
Table A.13 – Active power against wind speed (see 8.3.2)	83
Table A.14 – Measurement data set	84
Table A.15 – Maximum active power	84
Table A.16 – Reactive power characteristic	85
Table A.17 – PQ-diagram	86
Table A.18 – PQ-diagram at maximum voltage	87
Table A.19 – PQ-diagram at minimum voltage	88
Table A.20 – P-IUF _i diagram	88
Table A.21 – General test information	89
Table A.22 – Static error	89
Table A.23 – Dynamic response	90
Table A.24 – General test information	90
Table A.25 – Active power ramp rate calculation at start-up	90
Table A.26 – General test information	91
Table A.27 – Active power ramp rate limitation at start-up	91
Table A.28 – General test information	92
Table A.29 – Active power ramp rate limitation at normal stop	92
Table A.30 – General test information	92
Table A.31 – Active power ramp rate limitation in normal operation	93
Table A.32 – General test information	93
Table A.33 – Test at 0,25 × <i>P</i> _n < <i>P</i> < 0,5 × <i>P</i> _n	94

Table A.34 – Test at <i>P</i> > 0,8 x <i>P</i> _n	
Table A.35 – Synthetic inertia results	96
Table A.36 – General test information	
Table A.37 – Static error	99
Table A.38 – Dynamic response	
Table A.39 – Results for tests where the WT is not connected	101
Table A.40 – Results for tests where the WT is connected	
Table A.41 – Voltage protection	
Table A.42 – Frequency protection	
Table A.43 – Complete trip circuit test	
Table A.44 – RoCoF test results	
Table A.45 – RoCoF test information	107
Table A.46 – Reconnection test results	107
Table B.1 – Nominal values of the wind turbine used in the verification tests	111
Table B.2 – Input relative current fluctuation, $\Delta I/I$, for flicker coefficient $c(\psi_k) = 2,00 \pm 5$ % when $S_{k,fic} = 20 \cdot S_n$	112
Table B.3 – Input relative current fluctuation, $\Delta I/I$, for flicker coefficient $c(\psi_k) = 2,00 \pm 5$ % when $S_{k,fic} = 50 \cdot S_n$	112
Table B.4 – Test specification for distorted voltage with multiple zero crossings	113
Table D.1 – Example of measurements results presentation	133
Table E.1- Specification of exponents in accordance with IEC TR 61000-3-6	139
Table F.1- Main components influencing the electrical characteristics of the WT.	142

INTERNATIONAL ELECTROTECHNICAL COMMISSION

WIND ENERGY GENERATION SYSTEMS -

Part 21-1: Measurement and assessment of electrical characteristics – Wind turbines

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committee; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61400-21-1 has been prepared by IEC technical committee 88: Wind energy generation systems.

This first edition cancels and replaces the second edition of 61400-21 published in 2008. This edition constitutes a technical revision.

This edition includes the following new items with respect to 61400-21:

- a) frequency control measurement;
- b) updated reactive power control and capability measurement, including voltage and $\cos \varphi$ control;
- c) inertia control response measurement;
- d) overvoltage ride through test procedure;
- e) updated undervoltage ride through test procedure based on Wind Turbine capability;

IEC 61400-21-1:2019 © IEC 2019 - 11 -

f) new methods for the harmonic assessment.

Parts of the assessments related to the wind power plant evaluation are moved to Annex E, as they will be replaced by IEC 61400-21-2, *Measurement and assessment of electrical characteristics – Wind power plants*.

The text of this International Standard is based on the following documents:

FDIS	Report on voting
88/711/FDIS	88/716/RVD

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 61400 series, published under the general title *Wind energy generation systems*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

This part of IEC 61400 provides a uniform methodology that will ensure consistency and accuracy in reporting, testing and assessment of electrical characteristics of grid connected wind turbines (WTs). The electrical characteristics include wind turbine specifications and capabilities, voltage quality (emissions of flicker and harmonics), under- and overvoltage ride-through response, active power control, frequency control, voltage control, and reactive power control, grid protection and reconnection time.

This part of IEC 61400 has been prepared with the anticipation that it would be applied by:

- the WT manufacturer, striving to meet well-defined electrical characteristics;
- the WT purchaser, in specifying such electrical characteristics;
- the WT operator, who may be required to verify that stated, or required electrical characteristics are met;
- the WT planner or regulator, who has to be able to accurately and fairly determine the impact of a WT on the voltage quality to ensure that the installation is designed so that voltage quality requirements are respected;
- the WT certification authority or testing organization, in evaluating the electrical characteristics of the wind turbine type;
- the planner or regulator of the electric network, who has to be able to determine the grid connection required for a WT.

This part of IEC 61400 provides recommendations for preparing the measurements and assessment of electrical characteristics of grid connected WTs. This document will benefit those parties involved in the manufacture, installation planning, obtaining of permission, operation, usage, testing and regulation of WTs. The measurement and analysis techniques, recommended in this document, should be applied by all parties to ensure that the continuing development and operation of WTs are carried out in an atmosphere of consistent and accurate communication.

This part of IEC 61400 presents measurement and analysis procedures expected to provide consistent results that can be replicated by others. Any selection of tests can be done and reported separately.

WIND ENERGY GENERATION SYSTEMS –

Part 21-1: Measurement and assessment of electrical characteristics – Wind turbines

1 Scope

This part of IEC 61400 includes:

- definition and specification of the quantities to be determined for characterizing the electrical characteristics of a grid-connected wind turbine;
- measurement procedures for quantifying the electrical characteristics;
- procedures for assessing compliance with electrical connection requirements, including estimation of the power quality expected from the wind turbine type when deployed at a specific site.

The measurement procedures are valid for single wind turbines with a three-phase grid connection. The measurement procedures are valid for any size of wind turbine, though this part of IEC 61400 only requires wind turbine types intended for connection to an electricity supply network to be tested and characterized as specified in this part of IEC 61400.

The measured characteristics are valid for the specific configuration and operational mode of the assessed wind turbine product platform. If a measured property is based on control parameters and the behavior of the wind turbine can be changed for this property, it is stated in the test report. Example: Grid protection, where the disconnect level is based on a parameter and the test only verifies the proper functioning of the protection, not the specific level.

The measurement procedures are designed to be as non-site-specific as possible, so that electrical characteristics measured at for example a test site can be considered representative for other sites.

This document is for the testing of wind turbines; all procedures, measurements and tests related to wind power plants are covered by IEC 61400-21-2.

The procedures for assessing electrical characteristics are valid for wind turbines with the connection to the PCC in power systems with stable grid frequency.

NOTE

For the purposes of this document, the following terms for system voltage apply:

- Low voltage (LV) refers to U_n ≤ 1 kV;
- Medium voltage (MV) refers to 1 kV < $U_n \le 35$ kV;
- High voltage (HV) refers to 35 kV < $U_n \le 220$ kV;
- Extra high voltage (EHV) refers to $U_n > 220$ kV.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61000-3-2:2014, Electromagnetic compatibility (EMC) – Part 3-2: Limits – Limits for harmonic current emissions (equipment input current \leq 16 A per phase

IEC 61000-3-3, Electromagnetic compatibility (EMC) – Part 3-3: Limits – Limits of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current < 16 A per phase and not subject to conditional connection

IEC TR 61000-3-6, Electromagnetic compatibility (EMC) – Part 3-6: Limits – Assessment of emission limits for the connection of distorting installations to MV, HV and EHV power systems

IEC TR 61000-3-7, Electromagnetic compatibility (EMC) – Part 3-7: Limits – Assessment of emission limits for the connection of fluctuating installations to MV, HV and EHV power systems

IEC TR 61000-3-14, Electromagnetic compatibility (EMC) – Part 3-14: Assessment of emission limits for harmonics, interharmonics, voltage fluctuations and unbalance for the connection of disturbing installations to LV power systems

IEC 61000-4-7:2002, Electromagnetic compatibility (EMC) – Part 4-7: Testing and measurement techniques – General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto IEC 61000-4-7:2002/AMD1:2008

IEC 61000-4-15:2010, Electromagnetic compatibility (EMC) – Part 4-15: Testing and measurement techniques – Flickermeter – Functional and design specifications

IEC 61000-4-30, *Electromagnetic compatibility (EMC) – Part 4-30: Testing and measurement techniques – Power quality measurement methods*

IEC TR 61869-103:2012, Instrument transformers – The use of instrument transformers for power quality measurement

IEC 62008, Performance characteristics and calibration methods for digital data acquisition systems and relevant software