

Edition 3.0 2020-05

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Low-voltage surge protective devices – Part 12: Surge protective devices connected to low-voltage power systems – Selection and application principles

Parafoudres à basse tension – Partie 12: Parafoudres connectés aux réseaux à basse tension – Principes de choix et de mise en œuvre

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 29.240.10

ISBN 978-2-8322-7914-4

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

FC	DREWC)RD	10
IN	TRODU	JCTION	12
	0.1	General	12
	0.2	Keys to understanding the structure of this document	12
1	Scop)e	14
2	Norn	native references	14
3	Term	ns, definitions and abbreviated terms	15
	3.1	Terms and definitions	15
	3.2	List of abbreviated terms and acronyms used in this document	
4	Need	for protection	29
5	Low-	voltage power systems and equipment to be protected	30
	5 1	General	30
	5.2	Low-voltage power systems	
	5.2.1	General	
	5.2.2	Lightning overvoltages and surge currents	30
	5.2.3	Switching overvoltages	31
	5.2.4	Temporary overvoltages UTOV	32
	5.3	Characteristics of the equipment to be protected	33
6	Surg	e protective devices	33
	6.1	Basic functions of SPDs	33
	6.2	Additional requirements	34
	6.3	Classification of SPDs	34
	6.3.1	SPD: classification	34
	6.3.2	2 Typical design and topologies	35
	6.4	Characteristics of SPDs	36
	6.4.1	Service conditions as described in IEC 61643-11	36
	6.4.2	List of parameters for SPD selection	37
	6.5	Additional information on characteristics of SPDs	38
	6.5.1	Information related to power-frequency voltages	38
	6.5.2	Information related to surge currents	39
	6.5.3	Information related to voltage protection level provided by SPDs	40
	6.5.4	Information related to the SPD's status at its end of life	42
	6.5.5	ISCCR: Short-circuit current rating and I _{fi} : Follow current interrupt rating	43
	6.5.6	$J_{\rm L}$: Rated load current and ΔU : Voltage drop (for two-port SPDs or one-	10
	0.010	port SPDs with separate input and output terminals)	43
	6.5.7	Information related to change of characteristics of SPDs	44
7	Appl	ication of SPDs in low-voltage power systems	44
	7.1.1	General	44
	7.1.2	2 Consideration regarding location of the SPD depending on the classes of test	46
	7.1.3	SPD modes of protection and installation	46
	7.1.4	Need for additional protection	48
	7.2	Selection of SPD characteristics	55
	7.2.1	General	55
	7.2.2	Selection of U_{c} , U_{T} , I_{n} , I_{imp} , I_{max} , I_{SCCR} , I_{fi} and U_{oc} of the SPD	56

7.2.3	Protective distance	62
7.2.4	Expected lifetime	62
7.2.5	Interaction between SPDs and other devices	62
7.2.6	Choice of the voltage protection level U_{p}	63
7.2.7	Coordination between the chosen SPD and other SPDs	63
7.3	Characteristics of auxiliary devices	66
7.3.1	Disconnecting devices	66
7.3.2	Surge and event counters	66
7.3.3	Status indicator	67
Annex A (explanation	informative) Typical information required before selecting an SPD and on of testing procedures	68
A.1	Typical Information required before selecting an SPD	68
A.1.1	System data	68
A.1.2	SPD application considerations	68
A.1.3	Characteristics of SPD	69
A.1.4	Additional equipment and fittings	69
A.2	Explanation of testing procedures used in IEC 61643-11	70
A.2.1	General Principles	70
A.2.2	Test sequences and tests description	70
Annex B (informative) Examples of relationship between U_{c} and nominal system voltage	
and exam	ple of relationship between $U_{\sf p}$ and $U_{\sf c}$ for Metal oxide varistors (MOV)	78
B.1	Relationship between U_{c} and the nominal voltage of the system	78
B.2	Relationship between $U_{\rm p}$ and $U_{\rm c}$ for Metal oxide variators (MOV)	78
Annex C (informative) Environment – Surge voltages in LV systems	80
C.1	General	80
C.2	Lightning overvoltages	80
C.2.1	General	80
C.2.2	Surges transferred from MV to the LV system	81
C.2.3	Overvoltages caused by direct flashes to LV distribution systems	81
C.2.4	Induced overvoltages in LV distribution systems	82
C.2.5	Overvoltages caused by flashes to a Lightning Protection System or to a structure in close vicinity.	82
C.3	Switching overvoltages	83
C.3.1	General	
C.3.2	General description	
C 3 3	Circuit-breaker and switch operations	
C.3.4	Euse operations (current-limiting fuses)	
Annex D (informative) Partial lightning current calculations	87
Annex E (informative) TOV in the low-voltage system due to faults between high-	
voltage sy	vstem and earth	90
E.1	General	90
E.2	References	91
E.3	Symbols	91
E.4	Overvoltages in LV-systems during a high-voltage earth fault	91
E.5	Example of a TT-system – Calculation of the possible temporary overvoltages	93
E.5.1	Possible stresses on equipment in low-voltage installations due to earth	
	faults in a high-voltage system	93
E.5.2	Characteristics of the high-voltage system	94

E.6	Temporary power-frequency overvoltages depending on different LV- systems and different kinds of earthing configurations	94
E.6.1	General	
E.6.2	Conclusion – Worst case SPDs stress current for SPDs HV-TOV	
	behaviour	96
E.6.3	Conclusion – Worst case test source for SPDs HV-TOV behaviour, if the SPD is connected to ground between N-PE and / or L-PE:	96
E.6.4	Examples of different LV-systems and their possible earthing configurations	97
E.7	Values of the temporary overvoltages for the US TN C system	101
E.8	Values of temporary overvoltages used in IEC 61643-11 with explanations	103
E.8.1	General	103
E.8.2	Values of temporary overvoltages for US systems	106
E.8.3	Values of temporary overvoltages for Japanese systems	109
Annex F (informative) Coordination rules and principles	114
F.1	General	114
F.2	Energy coordination	114
F.2.1	General	114
F.2.2	Analytical studies: simple case of the coordination of two metal oxide varistors (MOV) based SPDs	114
F.2.3	Analytical study: case of coordination between a gap-based SPD and a	
F 0 4	Metal oxide variators (MOV) based SPD	118
F.2.4	Analytical study: general coordination of two SPDs	120
F.2.5	Coordination tasta, anarry and voltage protection apardination	121
г. э	Introduction	123
Г.J.I Г 2 2		123
Г.J.Z Г 2 2		124
F.3.3		124
Anney G	(informative) Examples of application	124
		120
G.I	Industrial application	120
G.2	Processo of a lightning protection system	124
G.3	Wind Turbinos	125
G.4		135
G.4.1	Transient overvoltages in the DEIG converter circuit	135
G 4 3	Transmission effect of the transient voltage due to a long cable	136
G 4 4	Voltage coordination between SPD and equipment in wind turbine	100
0.1.	systems	137
G.4.5	5 Possible solutions for the case described in CLC/TR 50539-22	139
Annex H ((informative) Risk assessment method and examples of application	140
H.1	General	140
H.2	Simplified method proposed for low voltage risk assessment as described in	140
Н 2 1	Overvoltage control	140
H.2.2	2 Simplified risk assessment method	140
H.2 3	B Example 1 – Building in rural environment	142
H.2.4	Example 2 – Building in rural environment powered by HV	142
H.2.5	5 Example 3 – Building in urban environment	143
H.2.6	Example 4 – Building in urban environment powered by HV	143

H.2.	7 Example 5 – electric vehicle supply equipment	143
H.2.	8 Example 6 – Chemical facility	144
H.3	Factors to be considered during risk assessment	146
H.3.	1 Environmental	146
H.3.	2 Equipment and facilities	147
H.3.	3 Economics and service interruption	148
H.3.	4 Safety	148
H.3.	5 Cost of protection	149
Annex I (informative) System stresses	150
I.1	Lightning overvoltages and currents [5.2.2]	150
I.1.1	Aspects of the power distribution system that affect the need for an SPD	150
I.1.2	Sharing of surge current within a structure	150
I.2	Switching overvoltages [5.2.2]	151
1.3	Temporary overvoltages U _{TOV} [5.2.3]	151
Annex J	(informative) Application of SPDs	153
J.1	Location and protection given by SPDs [7.1]	153
J.1.1	Possible modes of protection and installation [7.1.3]	153
J.1.2	Influence of the oscillation phenomena on the protective distance [7.2.3].	161
J.1.3	B Protection zone concept [7.2.3.5]	162
J.2	Selection of SPDs	164
J.2.*	1 Selection of <i>U</i> _C [7.3.1]	164
J.2.2	2 Coordination problems [7.3.6.2]	165
J.2.3	Practical cases [7.2.6.3]	167
J.3	Simple calculation of <i>I</i> _{imp} for a class I SPD in case of a building protected by a LPS	167
Annex K	(informative) Immunity vs. rated impulse voltage withstand	172
Annex L some co	(informative) Examples of SPD installation in power distribution boards in untries	178
Annex M terminals	(informative) Coordination when equipment has both signaling and power	183
Annex N	(informative) Short circuit backup protection and surge withstand	190
N 1	General	100
N 2	Information single shot 8/20 and 10/250 fuses withstand	100
N 3	Fuse Influencing factors (reduction) for preconditioning and operating duty	190
N. 4	test	191
N.4	operating duty withstand of fuses based on experimental data and confirmed by calculations based on the parameters and limits specified by	
	the IEC 60269 series	191
N.5	Behaviour of external disconnector technologies	193
N.6	Additional requirement and test values for SPD external disconnectors used in some countries.	193
Annex O lightning	(informative) Practical methods for testing system level immunity under discharge conditions	197
0.1	General	197
0.2	SPD discharge current test under normal service conditions	197
0.3	Induction test due to lightning currents	197
O.4	Recommended test classification of system level immunity test (following IEC 61000-4-5)	197
Annex P	(informative) Guide for testing SPDs containing multiple components	199

D 4		400
P.1 P.2	General Example of a multiple spark gaps in series with ohmic/capacitive trigger	199
	control	199
P.3	Example of 2 spark gaps inseries with capacitive trigger control and with a parallel connected series connection of $GDT + MOV(s)$	200
P 4	Example of a 3-electrode GDT with parallel MOV bypass/trigger control	200
P.5	Example of a 4-electrode gap with GDT + MOV trigger control	201
P.6	Example of a Spark Gap in parallel with a series-connected GDT and MOV	202
P.7	Example of a 3-electrode gap with trigger transformer	202
Annex Q	(informative) Exceptions in the USA related to Class I tested SPDs	204
Bibliograp	bhy	205
Figure 1 -	- Examples of one-port SPDs	19
Figure 2 -	- Examples of two-port SPDs	20
Figure 3 -	- Output voltage response of one-port and two-port SPDs to a combination	
wave gen	erator impulse	21
Figure 4 -	- Examples of components and combinations of components	36
Figure 5 -	- Typical curve of U _{res} versus <i>I</i> for Metal oxide varistors (MOV)	41
Figure 6 -	- Typical curve for a spark gap	42
Figure 7 -	- Flowchart for SPD application	45
Figure 8 -	- Example of connection Type 1 (CT1)	47
Figure 9 -	- Example of connection Type 2 (CT2)	47
Figure 10	- Influence of SPD connecting lead lengths	51
Figure 11 exceed 50	 Possible installation scheme with intermediate earth bar when lead length cm 	52
Figure 12	 Example of the need for additional SPDs when connected leads are less 	- 4
	m long	54
Figure 13	- Flow chart for the selection of an SPD	55
Figure 14	$ U_{T}$ and U_{TOV}	57
Figure 15	– SPD and external disconnector arrangement for continuity of supply	60
Figure 16	– SPD and external disconnector arrangement for continuity of protection	60
Figure 17	 Selectivity between OCPD and disconnector in case of short-circuit 	61
Figure 18	 Typical use of two SPDs – Electrical drawing 	64
Figure A.	1 – Test set-up for operating duty test	71
Figure A.2	2 – Test timing diagram for first 15 impulses	72
Figure A.3	3 – Test timing diagram for additional 5 impulses	72
Figure D. distributio	1 – Simple calculation of the sum of partial lightning currents into the power n system	87
Figure E. and LV-in	1 – Representative schematic for possible connections to earth in substations stallations and resulting overvoltages in case of faults	92
Figure E.	2 – Example of a TT-system with combined earthing of the transformer	03
	$T_{\rm AE}$ with EV -independent earling (earlied field a) AB	33 70
	J = 113 system (IEC 60364-4-44.2007, Figure 44D)	<i>ا</i> لا
	+ - 11 System (IEC 00304-4-44:2007, Figure 44C)	98
Figure E.	o – 11 system, example a (IEC 60364-4-44:2007, Figure 44D)	99

Figure E.6 – IT system, example b (IEC 60364-4-44:2007, Figure 44F)100

Figure E.7 – IT system, example c1 (IEC 60364-4-44:2007, Figure 44E)	101
Figure E.8 – Temporary overvoltage resulting from a fault in the primary (4 wires MV- system – direct earthing) of the distribution transformer in a TN-system according to North American practice	102
Figure E.9 – Typical TOV max p.u. RMS-voltages (V) Table 2. IEEE 1159-2009	107
Figure E.10 – Example of share the ground of the single phase center-tap grounded 100 / 200 V system and three phase (Delta) corner grounded 200 V system	111
Figure E.11 – Typical power distribution networks of single phase center-tap grounded 100 / 200 V system in Japan	112
Figure E.12 – Typical power system configuration in Japan	113
Figure E.13 – TOV characteristic by faults in the high-voltage system in Japan	113
Figure F.1 – Two Metal oxide varistors (MOV) with the same nominal discharge current	115
Figure F.2 – Two Metal oxide varistors (MOV) with different nominal discharge currents	117
Figure F.3 – Example of coordination of a gap-based SPD and a Metal oxide varistors (MOV) based SPD	120
Figure F.4 – LTE – Coordination method with standard pulse parameters	121
Figure F.5 – SPDs arrangement for the coordination test	126
Figure G.1 – Domestic installation	129
Figure G.2 – Industrial installation	132
Figure G.3 – Circuitry of industrial installation	133
Figure G.4 – Example for a LPS	135
Figure G.5 – Configuration of a DFIG wind turbine	136
Figure G.6 – PWM voltage between the generator and the converter at the rotor circuit	136
Figure G.7 – position of converter and generator	137
Figure G.8 – A converter tested in laboratory and its L-PE voltage waveform	138
Figure H.1 – Example of the individual sections of a power line	142
Figure H.2 – Example of electric vehicle supply equipment	144
Figure H.3 – Example of chemical facility	145
Figure J.1 – Installation of surge protective devices in TN-systems	154
Figure J.2 – Installation of surge protective devices in TT-systems (SPD downstream of the RCD)	156
Figure J.3 – Installation of surge protective devices in TT-systems (SPD upstream of the RCD)	157
Figure J.4 – Installation of surge protective devices in IT-systems without distributed neutral	158
Figure J.5 – Typical installation of SPD at the entrance of the installation in case of a TN C-S system	159
Figure J.6 – General way of installing one-port SPDs	159
Figure J.7 – Examples of acceptable and unacceptable SPD installations regarding EMC aspects	160
Figure J.8 – Physical and electrical representations of a system where equipment being protected is separated from the SPD giving protection	161
Figure J.9 – Possible oscillation between a Metal oxide varistors (MOV) SPD and the equipment to be protected	161
Figure J.10 – Example of voltage doubling	162
Figure J.11 – Subdivision of a building into protection zones	163
Figure J.12 – Coordination of two Metal oxide varistors (MOV)	166

Figure L.1 – A wiring diagram of an SPD connected on the load side of the main incoming isolator via a separate isolator (which could be included in the SPD enclosure)	. 178
Figure L.2 – SPD connected to the nearest available outgoing MCB to the incoming supply (TNS installation typically seen in the UK)	. 179
Figure L.3 – A single line-wiring diagram of an SPD connected in shunt on the first outgoing way of the distribution panel via a fuse (or MCB)	. 180
Figure L.4 – SPD connected to the nearest available circuit breaker on the incoming supply (US three phase 4W + G, TN-C-S installation)	. 181
Figure L.5 – SPD connected to the nearest available circuit breaker on the incoming supply (US single (split) phase 3W + G, 120/240 V system – typical for residential and small office applications)	. 182
Figure M.1 – Example of a PC with modem in a US power and communication system	. 184
Figure M.2 – Schematic of circuit of Figure M.1 used for experimental test	. 185
Figure M.3 – voltage recorded across reference points for the PC/modem during a surge in the example (voltage and current vs. time in μ s)	. 186
Figure M.4 – Typical TT system used for simulations	. 187
Figure M.5 – Voltage and current waveshapes measured during the application of a surge when a multi-service SPD was installed in the circuit of the structure shown in of Figure M.1	. 189
Figure N.1 – Schematic diagram for coordination of SPD internal and external disconnectors with MOV	. 195
Figure N.2 – Example of time-current characteristics of SPD disconnectors	. 196
Figure O.1 – Example of a circuit used to perform discharge current tests under normal service conditions	. 198
Figure O.2 – Example circuit of an induction test due to lightning currents	. 198
Figure P.1 – Example of multiple spark gaps in series with ohmic/capacitive trigger control	. 199
Figure P.2 – 2 spark gaps in serieswith capacitive trigger control	. 200
Figure P.3 – 3-electrode GDT with parallel MOV bypass/trigger control	.201
Figure P.4 – 4-electrode spark gap with GDT + MOV trigger control	.201
Figure P.5 – Spark Gap in parallel with series-connected GDT and MOV	. 202
Figure P.6 – 3-electrode spark gap with trigger transformer	.203
Table 1 – Maximum TOV values based on IEC 60364-4-44:2007	33
Table 2 – Preferred values of I _{imp}	40
Table 3 – modes of protection for various LV systems	48
Table 4 – Minimum recommended $U_{\rm C}$ of the SPD for various power systems	56
Table B.1 – Relationship between U_{c} and nominal system voltage	78
Table B.2 – Example of values of U_p/U_c for Metal oxide variators (MOV)	79
Table E.1 – Permissible power-frequency stress voltages according to IEC 60364-4-44	92
voltage-systems during a high-voltage earth fault	95
Table E.3 – TOV test values for systems complying with IEC 60364 series	.103
Table E.4 – Reference test voltage values for systems complying with IEC 60364 series.	. 105
Table E.5 – TOV parameters for US systems	. 107
Table E.6 – UL TOV values used to test SPDs in US systems	. 108

Table E.7 – Nominal voltage and reference test voltage for Japanese system	109
Table E.8 – TOV test parameters for Japanese system	110
Table E.9 – The maximum value of TOV voltage at the difference earth fault points	111
Table E.10 – Earth electrode class and maximum value of earth resistance	112
Table F.1 –	123
Table F.2 –	123
Table F.3 –	123
Table F.4 – Test procedure for coordination	127
Table G.1 – Peak value of PWM voltage and du/dt at two terminals based on investigation in 2011 in China	137
Table G.2 – Example of characteristics of the generator alternator excitation circuit and associated SPD	138
Table G.3 – Comparison between the wind turbine system and low-voltage distribution system	139
Table H.1 – Calculation of CRL	141
Table H.2 – Simplified method	145
Table H.3 – IEC 62305-2 method	146
Table J.1 – Determination of the value of <i>I</i> _{imp}	169
Table J.2 – Determination of the value of limp for additional systems used in Japan	170
Table J.3 – number of conductors related to usual structure of power supply	171
Table J.4 – number of conductors related to additional systems used in Japan	171
Table K.1 – Typical rated impulse voltages (derived from IEC 60664-1)	173
Table K.2 – Selection of immunity test levels depending on the installation conditions	176
Table K.3 – Immunity level for AC input	176
Table M.1 – Simulation results	187
Table N.1 – Examples of ratio between single shot withstand and full preconditioning/operating duty test	192
Table N.2 – Behaviour of external disconnector technologies	193
Table N.3 – Examples of electrical ratings for SFD	194
Table N.4 – Examples of tripping current for SSD	194

INTERNATIONAL ELECTROTECHNICAL COMMISSION

LOW-VOLTAGE SURGE PROTECTIVE DEVICES -

Part 12: Surge protective devices connected to low-voltage power systems – Selection and application principles

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61643-12 has been prepared by subcommittee 37A: Low-voltage surge protective devices, of IEC technical committee 37: Surge arresters.

This third edition cancels and replaces the second edition published in 2008. This edition constitutes a technical revision.

NOTE The following differing practice of a less permanent nature exists in the USA: In the USA, SPDs tested to Class I tests are not required. This exception applies to the entire document.

This edition includes the following significant technical changes with respect to the previous edition:

- a) Scope: Deleted reference to 1 500 V dc
- b) Added or revised some definitions
- c) Added new clause 4 on Need for protection

- d) Added new information on disconnecting devices
- e) Revised Characteristics of SPD
- f) Revised List of parameters for SPD selection
- g) Added new information on Measured Limiting Voltage
- h) Added or revised some Annexes

The text of this International Standard is based on the following documents:

FDIS	Report on voting
37A/341/FDIS	37A/347/RVD

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 61643 series, published under the general title *Low-voltage surge protective devices*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

0.1 General

Surge protective devices (SPDs) are used to protect, under specified conditions, electrical systems and equipment against various overvoltages and impulse currents, such as lightning and switching surges.

SPDs shall be selected according to their environmental conditions and the acceptable failure rate of the equipment and the SPDs.

This document provides information to the user about characteristics useful for the selection of an SPD.

This document provides information to evaluate the need for using SPDs in low-voltage systems, with reference to IEC 62305, Parts 1 to 4 and the IEC 60364 series. It also provides information on selection and coordination of SPDs, while taking into account the entire environment in which they are applied. Examples include: equipment to be protected and system characteristics, insulation levels, overvoltages, method of installation, location of SPDs, coordination of SPDs, end of life behaviour of SPDs and equipment failure consequences.

IEC 62305-2 provides a general method for evaluating the risk due to surges and lightning. IEC 60364-4-44 provides a simplified way of evaluating the risk posed to electrical installations.

Guidance on requirements for product insulation coordination is provided by IEC 60664 series. Requirements for safety (fire, overcurrent and electric shock) and installation are provided by IEC 60364 series.

The IEC 60364 series provide direct information for contractors on the installation of SPDs. IEC TR 62066 contains more information on the scientific background of surge protection.

0.2 Keys to understanding the structure of this document

The list below summarizes the structure of this document and provides a summary of the information covered in each clause and annex. The main clauses provide basic information on the factors used for SPD selection. Readers who wish to obtain more detail on the information provided in Clauses 4 to 7 should refer to the relevant annexes.

Clause 1 describes the scope of this document.

Clause 2 lists the normative references where additional information may be found.

Clause 3 provides definitions useful for the understanding of this document.

Clause 4 is an introduction to the risk of surges (considerations of when the use of SPDs is beneficial).

Clause 5 addresses the parameters of systems and equipment important for SPD selection. In addition to the stresses created by lightning, those created by the network itself are described, namely temporary overvoltages and switching surges.

Clause 6 lists the electrical parameters for the selection of an SPD and provides explanations regarding these parameters. These are related to those given in IEC 61643-11.

IEC 61643-12:2020 © IEC 2020

Clause 7 is the core of this document. It relates the stresses coming from the network (as discussed in Clause 5) to the characteristics of the SPD (as discussed in Clause 6). It also outlines how the protection by SPDs may be affected by its installation. The different steps for the selection of an SPD are presented, including coordination when more than one SPD is used in an installation (details about SPD coordination may be found in Annex F).

Annex A deals with information given with inquiries and explains the testing procedures used in IEC 61643-11.

Annex B provides examples of the relationship between two important parameters of SPDs, U_c and U_p , in the specific case of Metal Oxide Varistors (MOV) and also examples of the relationship between U_c and the nominal voltage of the network.

Annex C supplements the information given in Clause 5 on surge voltages in low-voltage systems.

Annex D deals with the sharing of lightning current between different earthing systems used to determine the SPD rating in case of direct lightning current.

Annex E deals with temporary overvoltages due to faults in the high-voltage system.

Annex F supplements the information given in Clause 7 on coordination rules when more than one SPD is used in a system.

Annex G provides specific examples on the use of this document.

Annex H provides specific examples of the use of the risk analysis given in Clause 4.

Annex I supplements the information given in Clause 5 about system stresses.

Annex J supplements the information given in Clause 7 on the application of SPDs in various low-voltage systems criteria for selection of SPDs.

Annex K discusses differences between immunity level and insulation withstand of electrical equipment.

Annex L provides practical examples of SPD installation as used in some countries.

Annex M discusses problems of coordination with equipment having both signaling and power terminals.

Annex N provides information on withstand of fuses in surge conditions.

Annex O provides practical methods for testing system level immunity.

Annex P provides test application to SPDs with multiple components.

LOW-VOLTAGE SURGE PROTECTIVE DEVICES -

Part 12: Surge protective devices connected to low-voltage power systems – Selection and application principles

1 Scope

This part of IEC 61643 describes the principles for the selection, operation, location and coordination of SPDs to be connected to 50/60 Hz AC power circuits, and equipment rated up to $1\,000$ V RMS.

These devices contain at least one non-linear component and are intended to limit surge voltages and divert surge currents.

NOTE 1 Additional requirements for special applications are also applicable, If required.

NOTE 2 IEC 60364 and IEC 62305-4 are also applicable.

NOTE 3 This document deal only with SPDs and not with surge protection components (SPC) integrated inside equipment.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60364-4-44:2007, Low-voltage electrical installations – Part 4-44: Protection for safety – Protection against voltage disturbances and electromagnetic disturbances

IEC 60364-5-53, Low-voltage electrical installations – Part 5-53: Selection and erection of electrical equipment – Devices for protection for safety, isolation, switching, control and monitoring

IEC 60529, Degrees of protection provided by enclosures (IP Code)

IEC 60664-1:2007, Insulation coordination for equipment within low-voltage systems – Part 1: *Principles, requirements and tests*

IEC 61000-4-5, Electromagnetic compatibility (EMC) – Part 4-5: Testing and measurement techniques – Surge immunity test

IEC 61643-32, Low-voltage surge protective devices – Part 32: Surge protective devices connected to the d.c. side of photovoltaic installations – Selection and application principles

IEC 61643-11:2011, Low-voltage surge protective devices – Part 11: Surge protective devices connected to low-voltage power systems – Requirements and test methods

IEC 62305-1:2010, Protection against lightning – Part 1: General principles

IEC 62305-2, Protection against lightning – Part 2: Risk management

IEC 62305-4, Protection against lightning – Part 4: Electrical and electronic systems within structures

IEC 62475:2010, High-current test techniques – Definitions and requirements for test currents and measuring systems

SOMMAIRE

A١	/ANT-P	ROPOS	217
IN	TRODU	ICTION	219
	0.1	Généralités	219
	0.2	Clés pour comprendre la structure du présent document	219
1	Dom	aine d'application	221
2	Réfé	rences normatives	221
3	Term	es, définitions et abréviations	222
	3.1	Termes et définitions	222
	3.2	Liste des abréviations et des acronymes utilisés du présent document	235
4	Néce	essité de protection	237
5	Rése	aux à basse tension et matériel à protéger	
•	5 1	Généralités	237
	5.2	Réseaux à basse tension	237
	521	Généralités	237
	522	Surtensions de foudre et courants de choc	237
	5.2.3	Surtensions de manœuvre	239
	5.2.4	Surtensions temporaires UTOV	239
	5.3	Caractéristiques des matériels à protéger	241
6	Para	foudres	241
	6 1	Fonctions de base des parafoudres	241
	6.2	Exigences supplémentaires	242
	6.3	Classification des parafoudres	242
	6.3.1	Parafoudres: classification	242
	6.3.2	Conception et topologies courantes	243
	6.4	Caractéristiques des parafoudres	244
	6.4.1	Conditions de service décrites dans l'IEC 61643-11	244
	6.4.2	Liste des paramètres pour le choix des parafoudres	245
	6.5	Informations supplémentaires sur les caractéristiques des parafoudres	246
	6.5.1	Informations relatives aux tensions du réseau	246
	6.5.2	Informations relatives aux courants de choc	247
	6.5.3	Informations relatives au niveau de protection en tension fourni par les parafoudres	249
	6.5.4	Informations relatives à l'état du parafoudre en fin de vie	250
	6.5.5	I _{SCCR} : courant de court-circuit assigné et I _{fi} : valeur assignée	251
	6.5.6	I_L : courant de charge assigné et ΔU : Chute de tension (pour les parafoudres à deux ports ou à un port avec bornes d'entrée et de sortie séparées)	251
	6.5.7	Informations relatives aux variations des caractéristiques des parafoudres	252
7	Mise	en œuvre des parafoudres dans les réseaux à basse tension	252
	7 1	Généralités	252
	7.2	Considération concernant l'emplacement du parafoudre en fonction des	202
		classes d'essai	254
	7.3	Modes de protection et installation d'un parafoudre	254
	7.4	Nécessité d'une protection supplémentaire	256
	7.4.1	Généralités	256

7.4.2	Influence des phénomènes d'oscillation sur la distance de protection	257
7.4.3	Tension induite dans l'installation	257
7.4.4	Influence de la longueur des câbles de raccordement	258
7.4.5	Influence du niveau de protection en tension	262
7.4.6	Concept de Zone de protection contre la foudre (LPZ)	264
7.5 Cho	ix des caractéristiques du parafoudre	266
7.5.1	Généralités	
7.5.2	Choix de U _c , U _T , I _n , I _{imp} , I _{max} , I _{SCCR} , I _{fi} et U _{oc} du parafoudre	266
7.5.3	Distance de protection	273
7.5.4	Durée de vie prévue	274
7.5.5	Interaction entre les parafoudres et d'autres dispositifs	274
7.5.6	Choix du niveau de protection en tension U_{p}	275
7.5.7	Coordination entre le parafoudre choisi et les autres parafoudres	276
7.6 Car	actéristiques des dispositifs auxiliaires	279
7.6.1	Dispositifs de déconnexion	279
7.6.2	Compteurs de chocs et d'événements	279
7.6.3	ndicateur d'état	
Annexe A (info	ormative) Informations types exigées avant de choisir un parafoudre et	
explicatio	n des procédures d'essai	281
A.1 Info	rmations types exigées avant de choisir un parafoudre	281
A.1.1	Données système	281
A.1.2	Considérations sur le fonctionnement du parafoudre	
A.1.3	Caractéristiques du parafoudre	
A.1.4	Matériels supplémentaires et fixations	282
A.2 Exp	lication des procédures d'essai utilisées dans l'IEC 61643-11	283
A.2.1	Principes généraux	
A.2.2	Séquences d'essais et description des essais	283
Annexe B (info	prmative) Exemples de relations entre U_{2} et la tension nominale du	
réseau et	exemple de relation entre U_p et U_c pour les varistances à oxyde	201
B.1 Rela	ation entre $U_{\rm C}$ et la tension nominale du réseau	
B.2 Rela	ation entre U_p et U_c pour les varistances à oxyde métallique (MOV)	291
Annexe C (info	ormative) Environnement – Tensions de chocs dans les réseaux BT	293
C.1 Gér	iéralités	293
C.2 Sur	tensions de foudre	293
C.2.1	Généralités	293
C.2.2	Surtensions transmises du réseau MT au réseau BT	294
C.2.3	Surtensions dues à des impacts directs sur les réseaux de	
	distribution BT	295
C.2.4	Surtensions induites dans les réseaux de distribution BT	295
C.2.5	Surtensions causées par des impacts sur un système de protection contre la foudre ou sur une structure à proximité immédiate	296
C.3 Sur	tensions de manœuvre	297
C.3.1	Généralités	297
C.3.2	Description générale	297
C.3.3	Manœuvres de disjoncteurs et d'interrupteurs	297
C.3.4	Fonctionnements des fusibles (fusibles limiteurs de courant)	299
Annexe D (info	ormative) Calculs de courants de foudre partiels	300
Annexe F (info	ormative) Surtension temporaire dans le réseau à basse tension due à	
des défau	its entre le réseau à haute tension et la terre	303

E.1	Généralités	303
E.2	Références	304
E.3	Symboles	304
E.4	Surtensions dans les réseaux BT pendant un défaut à la terre à haute tension	305
E.5	Exemple d'un schéma TT – Calcul de surtensions temporaires possibles	307
E.5.1	Contraintes possibles sur des matériels dans des installations à basse tension dues à des défauts à la terre dans le réseau à haute tension	307
E.5.2	Caractéristiques du réseau à haute tension	307
E.6	Surtensions à fréquence industrielle temporaires en fonction des réseaux BT et des différents types de configurations de mise à la terre	308
E.6.1	Généralités	308
E.6.2	Conclusion – Courant de contrainte des parafoudres le plus défavorable pour le comportement HT-TOV des parafoudres	310
E.6.3	Conclusion – Source d'essai du cas le plus défavorable pour le comportement HT-TOV des parafoudres, si le parafoudre est relié à la terre entre N-PE et/ou L-PE:	310
E.6.4	Exemples de différents réseaux BT et de leurs possibles configurations de mise à la terre	312
E.7	Valeurs des surtensions temporaires pour le schéma TN C des USA	316
E.8	Valeurs des surtensions temporaires utilisées dans l'IEC 61643-11 avec des	
	explications	318
E.8.1	Généralités	318
E.8.2	Valeurs des surtensions temporaires pour les réseaux américains	321
E.8.3	Valeurs des surtensions temporaires pour les réseaux japonais	324
Annexe F	(informative) Règles et principes de coordination	329
F.1	Généralités	329
F.2	Coordination de l'énergie	329
F.2.1	Généralités	329
F.2.2	Études analytiques: cas simple de la coordination de deux parafoudres à varistances à oxyde métallique (MOV)	330
F.2.3	Étude analytique: cas de la coordination entre un parafoudre à éclateur et un parafoudre à varistance à oxyde métallique (MOV)	333
F.2.4	Étude analytique: coordination générale de deux parafoudres	335
F.2.5	Méthode d'énergie traversante (LTE)	336
F.3	Essais de coordination: coordination de l'énergie ainsi que la protection en tension	339
F.3.1	Introduction	339
F.3.2	Critères de coordination	340
F.3.3	Techniques de coordination	340
F.3.4	Protocole d'essai	341
Annexe G	(informative) Exemples d'utilisation	345
G.1	Utilisation domestique	345
G.2	Utilisation industrielle	348
G.3	Présence d'un système de protection contre la foudre	353
G.4	Éoliennes	354
G.4.1	Généralités	354
G.4.2	Surtensions transitoires dans le circuit de convertisseur DFIG	355
G.4.3	Effet de transmission de la tension transitoire en raison de la longueur de câble	356

G.4.4	Coordination de tension entre le parafoudre et le matériel dans les parcs éoliens	357
G 4 5	Solutions possibles pour le cas décrit dans le CLC/TR 50539-22	359
Annexe H	(informative) Méthode d'appréciation du risque et exemples d'application	
	Généralités	261
п. і цэ	Méthodo simplifiés proposés pour l'apprésistion du riegue à basso tonsion	301
Π.Ζ	décrite dans l'IEC 60364-4-44	
H.2.1	Maîtrise des surtensions	
H 2 2	Méthode simplifiée d'appréciation du risque	361
H.2.3	Exemple 1 – Bâtiment en environnement rural	
H.2.4	Exemple 2 – Bâtiment en environnement rural alimenté en HT	
H.2.5	Exemple 3 – Bâtiment en environnement urbain	364
H.2.6	Exemple 4 – Bâtiment en environnement urbain alimenté en HT	
H.2.7	Exemple 5 – Système d'alimentation pour véhicule électrique	
H.2.8	Exemple 6 – Usine de produits chimiques	
H.3	Facteurs à prendre en considération lors de l'appréciation du risque	
H.3.1	Facteurs environnementaux	
H.3.2	Matériel et installations	
H.3.3	Aspects économiques et interruption de service	
H.3.4	Sécurité	
H.3.5	Dépenses relatives à la protection	
Annexe I	(informative) Contraintes dues aux réseaux	
11	Courants et surtensions de foudre [5 2 2]	372
1.1	Aspects des réseaux de distribution avant un effet sur la nécessité d'un	57 Z
1.1.1	parafoudre	372
I.1.2	Répartition du courant de choc dans une structure	372
1.2	Surtensions de manœuvre [5.2.3]	373
1.3	Surtensions temporaires U_{TOV} [5.2.4]	373
Annexe J	(informative) Utilisation des parafoudres	375
11	Emplacement et protection apportée par les parafoudres [7 1]	375
.111	Modes possibles de protection et d'installation [7,1,3]	
.112	Influence des phénomènes d'oscillation sur la distance de protection	
0.1.2		384
J.1.3	Concept de la zone de protection [7.1.4.6]	385
J.2	Choix des parafoudres	387
J.2.1	Choix de <i>U</i> _c [7.2.2.1]	387
J.2.2	Problèmes de coordination [7.3.7.2]	388
J.2.3	Cas pratiques [7.2.7.2]	390
J.3	Calcul simple de I _{imp} pour un parafoudre de classe I dans le cas d'un	
	bâtiment protégé par un système de protection contre la foudre	390
Annexe K	(informative) Immunité par rapport à la tension assignée de tenue aux	
choc	5	395
Annexe L	(informative) Exemples d'installation de parafoudres dans les tableaux de	
distri	bution de certains pays	402
Annexe M	(informative) Coordination dans le cas d'un matériel présentant à la fois	10-
des b	oornes de telecommunication et de puissance	407
Annexe N	(informative) Dispositif de protection contre les surintensités de courts-	A A A
circu		414
N.1	Generalites	414

N.2	Informations relatives à la tenue des fusibles à une onde de choc 8/20 et 10/350	
N.3	Facteurs influençant les fusibles (réduction) pour l'essai de préconditionnement et l'essai de fonctionnement en service	415
N.4	Tenue des fusibles selon les données expérimentales et confirmée par	
	IEC 60269	416
N.5	Comportement des déconnecteurs externes en fonction des technologies	417
N.6	Exigences et valeurs d'essai supplémentaires pour les déconnecteurs externes de parafoudres utilisés dans certains pays	418
Annexe O dans	(informative) Méthodes pratiques d'essai du niveau d'immunité du réseau les conditions de décharge de foudre	422
0.1	Généralités	422
0.2	Essai de courant de décharge du parafoudre dans les conditions normales de service	422
0.3	Essai d'induction due aux courants de foudre	422
0.4	Classification d'essai recommandée du niveau d'immunité du système (IEC 61000-4-5 suivante)	422
Annexe P comp	(informative) Guide d'essai des parafoudres contenant plusieurs osants	425
Р.1	Généralités	425
P.2	Exemple d'éclateurs multiples en série avec commande de déclenchement ohmique/capacitif	425
P.3	Exemple de 2 éclateurs en série avec commande de déclenchement capacitif et montage en série raccordé en parallèle de GDT + MOV	426
P.4	Exemple de GDT à 3 électrodes avec commande de dérivation/déclenchement parallèle avec MOV	
P.5	Exemple d'éclateur à 4 électrodes avec commande de déclenchement	427
P.6	Exemple d'éclateur en parallèle avec un GDT et MOV connectés en série	428
P.7	Exemple d'éclateur à 3 électrodes avec transformateur de déclenchement	429
Annexe Q aux e	(informative) Exceptions aux États-Unis en matière de parafoudres soumis ssais de Classe I	430
Bibliograp	hie	431
Figure 1 –	Exemples de parafoudres à un port	226
Figure 2 -	Exemples de parafoudres à deux ports	227
Figure 3 – choc de qu	Réponse en tension de sortie de parafoudres à un port et à deux ports à un énérateur d'ondes combinées	228
Figure 4 –	Exemples de composants et de combinaisons de composants	244
Figure 5 –	Courbe typique de U_{res} en fonction de <i>l</i> pour les varistances à oxyde	240
Figure 6	Courbe tunique d'un écletour	250
Figure 7	Organiaramma d'utiliaction des perefeudres	200
	Exemple de connexion de Tune 1 (CT1)	200
		200
Figure 9 –		200
Figure 10	- iniliance des longueurs des caples de raccordement des paratoudres	260
⊢ıgure 11 intermédia	 Schema d'installation possible avec une barre de mise à la terre aire lorsque la longueur de câble dépasse 50 cm 	262

Figure 12 – Exemple de la nécessité de parafoudres supplémentaires lorsque la longueur des câbles raccordés est inférieure à 50 cm	264
Figure 13 – Organigramme pour le choix d'un parafoudre	266
Figure 14 – U _T et U _{TOV}	268
Figure 15 – Disposition d'un parafoudre et d'un déconnecteur externe pour la continuité de l'alimentation	271
Figure 16 – Disposition d'un parafoudre et d'un déconnecteur externe pour la continuité de la protection	272
Figure 17 – Sélectivité entre l'OCPD et le déconnecteur en cas de court-circuit	273
Figure 18 – Utilisation type de deux parafoudres – Schéma électrique	277
Figure A.1 – Montage d'essai pour essai de fonctionnement en service	284
Figure A.2 – Chronogramme d'essai de fonctionnement pour les 15 premiers chocs	285
Figure A.3 – Chronogramme d'essai de fonctionnement pour 5 chocs supplémentaires	285
Figure D.1 – Calcul simple de la somme des courants de foudre partiels dans un réseau de distribution	300
Figure E.1 – Schéma représentatif des connexions possibles à la terre dans les postes et dans les installations BT, et surtensions apparaissant en cas de défauts	306
Figure E.2 – Exemple de schéma TT avec mise à la terre combinée du poste de transformation R_E avec mise à la terre de point milieu BT (neutre mis à la terre) R_B	307
Figure E.3 – Schéma TN (Figure 44B de l'IEC 60364-4-44:2007)	312
Figure E.4 – Schéma TT (Figure 44C de l'IEC 60364-4-44:2007)	313
Figure E.5 – Schéma IT, exemple a (Figure 44D de l'IEC 60364-4-44:2007)	314
Figure E.6 – Schéma IT, exemple b (Figure 44F de l'IEC 60364-4-44:2007)	315
Figure E.7 – Schéma IT, exemple c1 (Figure 44E de l'IEC 60364-4-44:2007)	316
Figure E.8 – Surtension temporaire résultant d'un défaut dans le primaire (réseau MT à 4 fils – mise à la terre directe) du transformateur de distribution dans un schéma TN conformément à la pratique en vigueur en Amérique du Nord	317
Figure E.9 – Tensions efficaces p.u. maximales de TOV classiques (V) (Tableau 2 de l'IEEE 1159-2009)	322
Figure E.10 – Exemple de partage de la terre d'un réseau 100 V/200 V mis à la terre à prise médiane monophasé et d'un réseau 200 V à une borne (Triangle) triphasé mis à la terre	326
Figure E.11 – Réseaux de distribution classiques d'un réseau 100 V/200 V mis à la terre à prise médiane monophasé au Japon	327
Figure E.12 – Configuration de réseau classique au Japon	328
Figure E.13 – Caractéristiques TOV par des défauts dans le réseau à haute tension au Japon	328
Figure F.1 – Deux varistances à oxyde métallique (MOV) ayant le même courant nominal de décharge	330
Figure F.2 – Deux varistances à oxyde métallique (MOV) ayant des courants nominaux de décharge différents	332
Figure F.3 – Exemple de coordination entre un parafoudre à éclateur et un parafoudre à varistance à oxyde métallique (MOV)	335
Figure F.4 – LTE – Méthode de coordination avec les paramètres d'une impulsion normale	337
Figure F.5 – Disposition des parafoudres pour l'essai de coordination	342
Figure G.1 – Utilisation domestique	347
Figure G.2 – Installation industrielle	351

Figure G.3 – Circuits de l'installation industrielle	. 352
Figure G.4 – Exemple de système de protection contre la foudre	354
Figure G.5 – Configuration d'une éolienne DFIG	. 355
Figure G.6 – Tension MLI entre la génératrice et le convertisseur au niveau du circuit du rotor	356
Figure G.7 – Position du convertisseur et de la génératrice	. 357
Figure G.8 – Convertisseur soumis à l'essai en laboratoire et sa forme d'onde de tension L-PE	358
Figure H.1 – Exemple de sections individuelles d'une ligne de puissance	363
Figure H.2 – Exemple de système d'alimentation pour véhicule électrique	365
Figure H.3 – Exemple d'usine de produits chimiques	. 366
Figure J.1 – Installation de parafoudres dans des schémas TN	. 376
Figure J.2 – Installation de parafoudres dans des schémas TT (parafoudre placé en aval du DDR)	378
Figure J.3 – Installation de parafoudres dans des schémas TT (parafoudre placé en amont du DDR)	379
Figure J.4 – Installation de parafoudres dans des schémas IT sans neutre distribué	380
Figure J.5 – Installation caractéristique de parafoudres à l'entrée d'une installation dans le cas d'un schéma TN C-S	381
Figure J.6 – Façon générale d'installer des parafoudres à un port	382
Figure J.7 – Exemples d'installations acceptables et non acceptables de parafoudres vis-à-vis de la CEM	383
Figure J.8 – Représentations physique et électrique d'un réseau dont le matériel protégé est séparé de la protection apportée par le parafoudre	384
Figure J.9 – Oscillation possible entre un parafoudre à varistance à oxyde métallique (MOV) et le matériel à protéger	385
Figure J.10 – Exemple de doublement de tension	. 385
Figure J.11 – Subdivision d'un bâtiment en zones de protection	. 386
Figure J.12 – Coordination de deux varistances à oxyde métallique (MOV)	389
Figure L.1 – Schéma de câblage d'un parafoudre relié du côté charge du déconnecteur de parafoudre d'arrivée principal par l'intermédiaire d'un déconnecteur de parafoudre séparé (qui pourrait être inclus dans l'enveloppe du parafoudre)	402
Figure L.2 – Parafoudre relié au disjoncteur à l'arrivée disponible le plus proche de l'alimentation d'entrée (installation TNS généralement rencontrée au Royaume-Uni)	403
Figure L.3 – Schéma de câblage unifilaire d'un parafoudre relié en dérivation sur la première sortie du tableau de distribution par l'intermédiaire d'un fusible (ou disioncteur)	404
Figure L 4 – Parafoudre relié au dicioncteur disponible le plus proche sur l'alimentation	.404
d'entrée (installation TN-C-S, 4W + G triphasée rencontrée aux États-Unis)	405
Figure L.5 – Parafoudre relié au disjoncteur disponible le plus proche sur l'alimentation d'entrée (réseau 120/240 V, 3W + G monophasé (phases séparées) rencontré aux États-Unis – typique pour les applications résidentielles et des petites entreprises)	406
Figure M.1 – Exemple d'ordinateur avec modem dans un réseau de puissance et de communication rencontré aux États-Unis	408
Figure M.2 – Schéma du circuit de la Figure M.1 utilisé pour les essais expérimentaux	409
Figure M.3 – Tension enregistrée aux points de référence pour l'ordinateur/le modem au cours d'une surtension dans l'exemple (tension et courant en fonction du temps, en us)	110
Figure M.4 – Schéma TT typique utilisé pour les simulations	.410

Figure M.5 – Formes d'ondes de tension et de courant mesurées lors de l'application d'une surtension lorsqu'un parafoudre multifonction a été installé dans le circuit de la structure représentée à la Figure M.1	413
Figure N.1 – Schéma de coordination des déconnecteurs interne et externe du parafoudre avec la varistance à oxyde métallique (MOV)	420
Figure N.2 – Exemple de caractéristiques temps/courant des déconnecteurs de parafoudre	421
Figure O.1 – Exemple de circuit utilisé pour procéder aux essais de courant de décharge dans les conditions normales de service	423
Figure O.2 – Exemple de circuit d'un essai d'induction due à des courants de foudre	424
Figure P.1 – Exemple d'éclateurs multiples en série avec commande de déclenchement ohmique/capacitif	426
Figure P.2 – 2 éclateurs en série avec commande de déclenchement capacitif	426
Figure P.3 – Exemple de GDT à 3 électrodes avec commande de dérivation/déclenchement parallèle avec MOV	427
Figure P.4 – Éclateur à 4 électrodes avec commande de déclenchement GDT + MOV	428
Figure P.5 – Éclateur en parallèle avec un GDT et MOV connectés en série	428
Figure P.6 – Éclateur à 3 électrodes avec transformateur de déclenchement	429
Tableau 1 – Valeurs maximales des surtensions temporaires selon l'IEC 60364-4- 44:2007	241
Tableau 2 – Valeurs préférentielles de limp	
Tableau 3 – Modes de protection pour différents réseaux BT	
Tableau 4 – Valeur de $U_{\rm C}$ minimale recommandée du parafoudre pour les différents réseaux	267
Tableau B.1 – Relation entre U_{c} et la tension nominale du réseau	291
Tableau B.2 – Exemple de valeurs de U_p/U_c pour les varistances à oxyde métallique (MOV)	292
Tableau E.1 – Tensions de contrainte à fréquence industrielle admissibles conformément à l'IEC 60364-4-44	305
Tableau E.2 – Tensions de contrainte à fréquence industrielle et tension de défaut à fréquence industrielle dans les réseaux à basse tension pendant un défaut à la terre à	
	309
Tableau E.3 – Valeurs d'essai de TOV pour des réseaux conformes à la série IEC 60364	319
Tableau E.4 – Valeurs de tension d'essai de référence pour des réseaux conformes à la série IEC 60364	320
Tableau E.5 – Paramètres de TOV pour les réseaux américains	322
Tableau E.6 – Valeurs de TOV UL utilisées pour soumettre les parafoudres à l'essai dans les réseaux américains	323
Tableau E.7 – Tension nominale et tension d'essai de référence pour les réseaux japonais	324
Tableau E.8 – Paramètres d'essai de TOV pour les réseaux japonais	325
Tableau E.9 – Valeur maximale de la tension TOV aux différents points de défaut à la terre326	
Tableau E.10 – Classe de prise de terre et valeur maximale de la résistance de terre	327
Tableau F.1 –	339
Tableau F.2 –	339
Tableau F.3 –	339

Tableau F.4 – Procédure d'essai de coordination	343
Tableau G.1 – Valeur de crête de la tension MLI et de d <i>u</i> /d <i>t</i> aux deux bornes selon l'enquête réalisée en Chine en 2011	357
Tableau G.2 – Exemple de caractéristiques du circuit d'excitation de l'alternateur de génératrice et du parafoudre associé	358
Tableau G.3 – Comparaison entre le parc éolien et le réseau de distribution à basse tension	359
Tableau H.1 – Calcul de CRL	362
Tableau H.2 – Méthode simplifiée	367
Tableau H.3 – Méthode de l'IEC 62305-2	368
Tableau J.1 – Détermination de la valeur de <i>I</i> _{imp}	392
Tableau J.2 – Détermination de la valeur de limp pour les réseaux supplémentaires utilisés au Japon	393
Tableau J.3 – Nombre de conducteurs correspondant à la structure habituelle de l'alimentation	394
Tableau J.4 – Nombre de conducteurs correspondant aux réseaux supplémentaires utilisés au Japon	394
Tableau K.1 – Tensions assignées de tenue aux chocs classiques (déduites de l'IEC 60664-1)	396
Tableau K.2 – Choix des niveaux d'essai d'immunité en fonction des conditions de l'installation	399
Tableau K.3 – Niveau d'immunité d'une entrée en courant alternatif	400
Tableau M.1 – Résultats de simulation	412
Tableau N.1 – Exemples de rapports entre la tenue à une onde de choc et l'ensemble de l'essai de préconditionnement/fonctionnement en service	416
Tableau N.2 – Comportement des déconnecteurs externes selon les technologies	418
Tableau N.3 – Exemples de caractéristiques assignées électriques pour les déconnecteurs à fusibles de parafoudre (SFD)	419
Tableau N.4 – Exemples de courants de déclenchement pour les SSD	419

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

PARAFOUDRES À BASSE TENSION -

Partie 12: Parafoudres connectés aux réseaux à basse tension – Principes de choix et de mise en œuvre

AVANT-PROPOS

- 1) La Commission Électrotechnique Internationale (IEC) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de l'IEC). L'IEC a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. À cet effet, l'IEC entre autres activités publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de l'IEC"). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec l'IEC, participent également aux travaux. L'IEC collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- 2) Les décisions ou accords officiels de l'IEC concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l'IEC intéressés sont représentés dans chaque comité d'études.
- 3) Les Publications de l'IEC se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de l'IEC. Tous les efforts raisonnables sont entrepris afin que l'IEC s'assure de l'exactitude du contenu technique de ses publications; l'IEC ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
- 4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de l'IEC s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de l'IEC dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de l'IEC et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
- 5) L'IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de l'IEC. L'IEC n'est responsable d'aucun des services effectués par les organismes de certification indépendants.
- 6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
- 7) Aucune responsabilité ne doit être imputée à l'IEC, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de l'IEC, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de l'IEC ou de toute autre Publication de l'IEC, ou au crédit qui lui est accordé.
- 8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.
- 9) L'attention est attirée sur le fait que certains des éléments de la présente Publication de l'IEC peuvent faire l'objet de droits de brevet. L'IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevets et de ne pas avoir signalé leur existence.

La Norme internationale IEC 61643-12 a été établie par le sous-comité 37A: Dispositifs de protection à basse tension contre les surtensions, du comité d'études 37 de l'IEC: Parafoudres.

Cette troisième édition annule et remplace la deuxième édition parue en 2008. Cette édition constitue une révision technique.

NOTE La méthode différente suivante, à caractère moins permanent, existe aux États-Unis: Aux États-Unis, les parafoudres soumis à l'essai de Classe I ne sont pas exigés. Cette exception s'applique à l'ensemble du document.

Cette édition inclut les modifications techniques majeures suivantes par rapport à l'édition précédente:

- a) Domaine d'application: La référence à 1 500 V en courant continu a été supprimée
- b) Certaines définitions ont été ajoutées ou révisées
- c) Un nouvel Article 4 relatif à la nécessité de protection a été ajouté
- d) De nouvelles informations relatives aux dispositifs de déconnexion ont été ajoutées
- e) Les caractéristiques du parafoudre ont été révisées
- f) La liste des paramètres pour le choix des parafoudres a été révisée
- g) De nouvelles informations relatives à la tension de limitation mesurée ont été ajoutées
- h) Certaines Annexes ont été ajoutées ou révisées

Le texte de cette Norme internationale est issu des documents suivants:

FDIS	Rapport de vote
37A/341/FDIS	37A/347/RVD

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de la présente Norme internationale.

Ce document a été rédigé selon les Directives ISO/IEC, Partie 2.

Une liste de toutes les parties de la série IEC 61643, publiées sous le titre général *Parafoudres à basse tension*, peut être consultée sur le site web de l'IEC.

Le comité a décidé que le contenu de ce document ne sera pas modifié avant la date de stabilité indiquée sur le site web de l'IEC sous "http://webstore.iec.ch" dans les données relatives au document recherché. À cette date, le document sera

- reconduit,
- supprimé,
- remplacé par une édition révisée, ou
- amendé.

IMPORTANT – Le logo "*colour inside*" qui se trouve sur la page de couverture de cette publication indique qu'elle contient des couleurs qui sont considérées comme utiles à une bonne compréhension de son contenu. Les utilisateurs devraient, par conséquent, imprimer ce document en utilisant une imprimante couleur.

INTRODUCTION

0.1 Généralités

Les parafoudres sont utilisés pour assurer la protection, dans des conditions spécifiques, des systèmes et des appareils électriques contre différents surtensions et courants de choc (les surtensions dues à la foudre et les surtensions de coupure, par exemple).

Les parafoudres doivent être choisis selon leur exposition et le taux acceptable de défaillance du matériel et des parafoudres.

Le présent document fournit des informations à l'utilisateur sur les caractéristiques utiles pour choisir un parafoudre.

Le présent document fournit des informations permettant d'évaluer la nécessité d'utiliser des parafoudres dans des réseaux à basse tension, en faisant référence aux parties 1 à 4 de l'IEC 62305 et à la série IEC 60364. Il fournit également des informations concernant le choix et la coordination des parafoudres, tout en tenant compte de l'environnement global dans lequel ils sont mis en œuvre. Exemples: matériel à protéger, caractéristiques du système, niveaux d'isolement, surtensions, méthode d'installation, emplacement des parafoudres, coordination des parafoudres, comportement de fin de vie des parafoudres et conséquences des défaillances pour les matériels.

L'IEC 62305-2 fournit une méthode générale d'évaluation du risque lié aux surtensions et à la foudre. L'IEC 60364-4-44 donne une méthode simplifiée d'évaluation du risque lié aux installations électriques.

Des recommandations sur les exigences de coordination de l'isolement des produits sont données dans la série IEC 60664. Des exigences de sécurité (incendie, surintensités et chocs électriques) et d'installation sont données dans la série IEC 60364.

Les publications de la série IEC 60364 donnent des informations directes aux installateurs pour l'installation des parafoudres. L'IEC TR 62066 donne de plus amples informations sur l'arrière-plan scientifique de la protection contre les surtensions.

0.2 Clés pour comprendre la structure du présent document

La liste ci-dessous résume la structure du présent document ainsi que les informations données dans les articles et les annexes. Les articles principaux fournissent des informations de base sur les facteurs utilisés pour le choix des parafoudres. Il convient que les lecteurs souhaitant obtenir plus de détails sur les renseignements fournis de l'Article 4 à l'Article 7 se réfèrent aux annexes appropriées.

L'Article 1 décrit le domaine d'application du présent document.

L'Article 2 donne les références normatives dans lesquelles des informations complémentaires peuvent être obtenues.

L'Article 3 donne les définitions utiles pour la compréhension du présent document.

L'Article 4 est une introduction à l'analyse du risque de chocs (considérations sur les cas où un parafoudre est utile).

L'Article 5 traite des paramètres des réseaux et des matériels importants pour le choix d'un parafoudre. En plus des contraintes dues à la foudre, celles dues au réseau lui-même sont décrites, à savoir les surtensions temporaires et les surtensions de coupure.

L'Article 6 énumère les paramètres électriques pour le choix d'un parafoudre et donne des explications concernant ces paramètres. Ceux-ci correspondent à ceux de l'IEC 61643-11.

L'Article 7 est l'article principal du présent document. Il compare les contraintes provenant du réseau (Article 5) et les caractéristiques du parafoudre (Article 6). Il indique également dans quelle mesure la protection assurée par les parafoudres peut être affectée par son installation. Les différentes étapes du choix d'un parafoudre sont présentées, incluant la coordination lorsque plus d'un parafoudre est utilisé dans une installation (des informations détaillées sur la coordination des parafoudres sont indiquées à l'Annexe F).

L'Annexe A donne des informations relatives aux enquêtes et explique les procédures d'essai utilisées dans l'IEC 61643-11.

L'Annexe B donne des exemples de relations entre les deux paramètres importants des parafoudres, $U_{\rm c}$ et $U_{\rm p}$, dans le cas spécifique des varistances à oxyde métallique (MOV), ainsi que des exemples de relations entre $U_{\rm c}$ et la tension nominale du réseau.

L'Annexe C complète les informations données à l'Article 5 sur les tensions de choc dans les réseaux à basse tension.

L'Annexe D traite de la répartition du courant de foudre entre différents schémas de liaison à la terre utilisés pour déterminer les caractéristiques assignées du parafoudre en cas de courant de foudre direct.

L'Annexe E traite des surtensions temporaires dues à des défauts dans le réseau à haute tension.

L'Annexe F complète les informations données à l'Article 7 sur les règles de coordination lorsque plusieurs parafoudres sont utilisés dans une installation.

L'Annexe G donne des exemples spécifiques d'application du présent document.

L'Annexe H donne des exemples spécifiques de l'utilisation de l'analyse du risque présentée à l'Article 4.

L'Annexe I complète les informations données à l'Article 5 sur les contraintes du réseau.

L'Annexe J complète les informations données à l'Article 7 sur l'utilisation des parafoudres selon différents types de réseaux à basse tension pour le choix des parafoudres.

L'Annexe K traite des différences entre le niveau d'immunité et la tenue à l'isolement des appareils électriques.

L'Annexe L donne des exemples pratiques d'installations de parafoudre telles qu'elles sont utilisées dans certains pays.

L'Annexe M traite des problèmes de coordination avec un matériel présentant à la fois des bornes de télécommunication et de puissance.

L'Annexe N donne des informations sur la tenue des fusibles dans des conditions de surtension.

L'Annexe O présente des méthodes pratiques d'essai de l'immunité au niveau du réseau.

L'Annexe P fournit une application d'essai pour les parafoudres à plusieurs composants.

PARAFOUDRES À BASSE TENSION -

Partie 12: Parafoudres connectés aux réseaux à basse tension – Principes de choix et de mise en œuvre

1 Domaine d'application

La présente partie de l'IEC 61643 décrit les principes relatifs au choix, au fonctionnement, à l'emplacement et à la coordination des parafoudres à connecter à des circuits de puissance 50 Hz/60 Hz en courant alternatif, et des matériels de puissance allant jusqu'à 1 000 V en valeur efficace.

Ces dispositifs contiennent au moins un composant non linéaire et visent à limiter les tensions de choc et à écouler les courants de choc.

NOTE 1 Des exigences supplémentaires relatives à des applications particulières sont également applicables, si cela est exigé.

NOTE 2 L'IEC 60364 et l'IEC 62305-4 s'appliquent également.

NOTE 3 Le présent document traite seulement des parafoudres et non des composants de parafoudres (SPC) intégrés dans un matériel.

2 Références normatives

Les documents suivants sont cités dans le texte de sorte qu'ils constituent, pour tout ou partie de leur contenu, des exigences du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

IEC 60364-4-44:2007, Installations électriques à basse tension – Partie 4-44: Protection pour assurer la sécurité – Protection contre les perturbations de tension et les perturbations électromagnétiques

IEC 60364-5-53, Installations électriques à basse tension – Partie 5-53: Choix et mise en œuvre des matériels électriques – Dispositifs de protection pour assurer la sécurité, le sectionnement, la coupure, la commande et la surveillance

IEC 60529, Degrés de protection procurés par les enveloppes (Code IP)

IEC 60664-1:2007, Coordination de l'isolement des matériels dans les systèmes (réseaux) à basse tension – Partie 1: Principes, exigences et essais

IEC 61000-4-5, Compatibilité électromagnétique (CEM) – Partie 4-5: Techniques d'essai et de mesure – Essai d'immunité aux ondes de choc

IEC 61643-32, Parafoudres basse tension – Partie 32: Parafoudres connectés au côté courant continu des installations photovoltaïques – Principes de choix et d'application

IEC 61643-11:2011, Parafoudres basse tension – Partie 11: Parafoudres connectés aux systèmes basse tension – Exigences et méthodes d'essai

IEC 62305-1:2010, Protection contre la foudre – Partie 1: Principes généraux

IEC 62305-2, Protection contre la foudre – Partie 2: Évaluation des risques

IEC 62305-4, Protection contre la foudre – Partie 4: Réseaux de puissance et de communication dans les structures

IEC 62475:2010, Techniques des essais à haute intensité – Définitions et exigences relatives aux courants d'essai et systèmes de mesure