

Edition 2.0 2021-02 REDLINE VERSION

INTERNATIONAL STANDARD

Terrestrial photovoltaic (PV) modules – Design qualification and type approval – Part 1-1: Special requirements for testing of crystalline silicon photovoltaic (PV) modules

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 27.160

ISBN 978-2-8322-9487-1

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD4				
1 Sco	pe- <mark>and-object</mark>	6		
2 Nori	Normative references			
3 Terr				
4 Tes				
	ting			
	•			
	7 Pass criteria			
	or visual defects			
•	ort			
	lifications			
11 Test	t flow and procedures			
11.1	Visual inspection (MQT 01)			
11.2	Maximum power determination (MQT 02)			
11.3	Insulation test (MQT 03)			
11.4	Measurement of temperature coefficients (MQT 04)	8		
11.5	Measurement of nominal module operating temperature (NMOT) (MQT 05) Placeholder section, formerly NMOT	8		
11.6	Performance at STC (MQT 06.1) and NMOT (MQT 06.2)			
11.7	Performance at low irradiance (MQT 07)			
11.8	Outdoor exposure test (MQT 08)			
11.9	Hot-spot endurance test (MQT 09)			
11.9	0.1 Purpose	8		
11.9	0.2 Classification of cell interconnection	8		
11.9	0.3 Apparatus	8		
11.9	0.4 Procedure	9		
11.9	0.5 Final measurements	9		
11.9	•			
	UV preconditioning test (MQT 10)			
	Thermal cycling test (MQT 11)			
11.12				
11.13				
	Robustness of terminations test (MQT 14)			
11.15	5 (/			
11.10	Static mechanical load test (MQT 16) Hail test (MQT 17)			
11.17				
-	Stabilization (MQT 19)			
11.13				
11.1				
11.1				
11.1				
11.19.5 Final stabilization (MQT 19.2)11				
	Cyclic (dynamic) mechanical load test (MQT 20)			
	Potential induced degradation test (MQT 21)			

IEC 61215-1-1:2021 RLV © IEC 2021	- 3 -
11.22 Bending test (MQT 22)	
Figure 1 – Flow chart summary of MQT 19.	212

INTERNATIONAL ELECTROTECHNICAL COMMISSION

TERRESTRIAL PHOTOVOLTAIC (PV) MODULES – DESIGN QUALIFICATION AND TYPE APPROVAL –

Part 1-1: Special requirements for testing of crystalline silicon photovoltaic (PV) modules

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

This redline version of the official IEC Standard allows the user to identify the changes made to the previous edition IEC 61215-1-1.2016. A vertical bar appears in the margin wherever a change has been made. Additions are in green text, deletions are in strikethrough red text.

IEC 61215-1-1:2021 RLV © IEC 2021 - 5 -

International Standard IEC 61215-1-1 has been prepared by IEC technical committee 82: Solar photovoltaic energy systems.

This second edition cancels and replaces the first edition of IEC 61215-1-1, issued in 2016, and constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) A cyclic (dynamic) mechanical load test (MQT 20) added.
- b) A test for detection of potential-induced degradation (MQT 21) added.
- c) A bending test (MQT 22) for flexible modules added.
- d) A procedure for stress specific stabilization BO LID (MQT 19.3) added.
- e) A final stabilization procedure for modules undergoing PID testing added.

Informative Annex A of IEC 61215-1:2021 explains the background and reasoning behind some of the more substantial changes that were made in the IEC 61215 series in progressing from edition 1 to edition 2.

The text of this International Standard is based on the following documents:

FDIS	Report on voting
82/1824/FDIS	82/1849/RVD

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

This standard is to be read in conjunction with IEC 61215-1:2021 and IEC 61215-2:2021.

A list of all parts in the IEC 61215 series, published under the general title *Terrestrial* photovoltaic (PV) modules – Design qualification and type approval, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

TERRESTRIAL PHOTOVOLTAIC (PV) MODULES – DESIGN QUALIFICATION AND TYPE APPROVAL –

Part 1-1: Special requirements for testing of crystalline silicon photovoltaic (PV) modules

1 Scope and object

This part of IEC 61215 lays down IEC requirements for the design qualification and type approval of terrestrial photovoltaic modules suitable for long-term operation in general open air climates, as defined in IEC 60721-2-1. This standard is intended to apply to all crystalline silicon terrestrial flat plate modules.

This standard does not apply to modules used with concentrated sunlight although it may be utilized for low concentrator modules (1 to 3 suns). For low concentration modules, all tests are performed using the current, voltage and power levels expected at the design concentration.

The object of this test sequence is to determine the electrical and thermal characteristics of the module and to show, as far as possible within reasonable constraints of cost and time, that the module is capable of withstanding prolonged exposure in climates described in the scope. The actual lifetime expectancy of modules so qualified will depend on their design, their environment and the conditions under which they are operated.

This document lays down requirements for the design qualification of terrestrial photovoltaic modules suitable for long-term operation in open-air climates. The useful service life of modules so qualified will depend on their design, their environment and the conditions under which they are operated. Test results are not construed as a quantitative prediction of module lifetime. In climates where 98th percentile operating temperatures exceed 70 °C, users are recommended to consider testing to higher temperature test conditions as described in IEC TS 63126.

Users desiring qualification of PV products with lesser lifetime expectations are recommended to consider testing designed for PV in consumer electronics, as described in IEC 63163 (under development). Users wishing to gain confidence that the characteristics tested in IEC 61215 appear consistently in a manufactured product may wish to utilize IEC 62941 regarding quality systems in PV manufacturing.

This document is intended to apply to all crystalline silicon terrestrial flat plate modules.

This document does not apply to modules used with concentrated sunlight although it may be utilized for low concentrator modules (1 to 3 suns). For low concentration modules, all tests are performed using the irradiance, current, voltage and power levels expected at the design concentration.

The objective of this test sequence is to determine the electrical characteristics of the module and to show, as far as possible within reasonable constraints of cost and time, that the module is capable of withstanding prolonged exposure outdoors. Accelerated test conditions are empirically based on those necessary to reproduce selected observed field failures and are applied equally across module types. Acceleration factors may vary with product design and thus not all degradation mechanisms may manifest. Further general information on accelerated test methods including definitions of terms may be found in IEC 62506.

Some long-term degradation mechanisms can only reasonably be detected via component testing, due to long times required to produce the failure and necessity of stress conditions that are expensive to produce over large areas. Component tests that have reached a sufficient

level of maturity to set pass/fail criteria with high confidence are incorporated into the IEC 61215 series via addition to Table 1 in IEC 61215-1:2021. In contrast, the tests procedures described in this series, in IEC 61215-2, are performed on modules.

This document defines PV technology dependent modifications to the testing procedures and requirements per IEC 61215-1:20162021 and IEC 61215-2:20162021.

2 Normative references

The normative references of IEC 61215-1:20162021 and IEC 61215-2:20162021 are applicable without modifications.

Edition 2.0 2021-02

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Terrestrial photovoltaic (PV) modules – Design qualification and type approval – Part 1-1: Special requirements for testing of crystalline silicon photovoltaic (PV) modules

Modules photovoltaïques (PV) pour applications terrestres – Qualification de la conception et homologation –

Partie 1-1: Exigences particulières d'essai des modules photovoltaïques (PV) au silicium cristallin

CONTENTS

FOREWORD	3
1 Scope	5
2 Normative references	5
3 Terms and definitions	6
4 Test samples	6
5 Marking and documentation	6
6 Testing	
7 Pass criteria	
9 Report	
10 Modifications	
11 Test flow and procedures	
11.1 Visual inspection (MQT 01)	
11.2 Maximum power determination (MQT 02)	
11.3 Insulation test (MQT 03)	
11.4 Measurement of temperature coefficients (MQT 04)	
11.5 Placeholder section, formerly NMOT	
11.6 Performance at STC (MQT 06.1)	
11.7 Performance at low irradiance (MQT 07)	
11.8 Outdoor exposure test (MQT 08)	
11.9 Hot-spot endurance test (MQT 09)	
11.9.1 Purpose	
11.9.2 Classification of cell interconnection	
11.9.3 Apparatus	
11.9.4 Procedure	
11.9.5 Final measurements	
11.9.6 Requirements	
11.10 UV preconditioning test (MQT 10)	
11.11 Thermal cycling test (MQT 11)	
11.12 Humidity-freeze test (MQT 12)	
11.13 Damp heat test (MQT 13)	
11.14 Robustness of terminations(MQT 14) 11.15 Wet leakage current test (MQT 15)	
11.15 Wet leakage current test (MQT 15)11.16 Static mechanical load test (MQT 16)	
11.17 Hail test (MQT 17)	
11.18 Bypass diode testing (MQT 18)	
11.19 Stabilization (MQT 19)	
11.19.1 Criterion definition for stabilization	
11.19.2 Light induced stabilization procedures	
11.19.3 Other stabilization procedures	
11.19.4 Initial stabilization (MQT 19.1)	
11.19.5 Final stabilization (MQT 19.2)	
11.20 Cyclic (dynamic) mechanical load test (MQT 20)	
11.21 Potential induced degradation test (MQT 21)	
11.22 Bending test (MQT 22)	
Figure 1 – Flow chart summary of MQT 19.2.	

INTERNATIONAL ELECTROTECHNICAL COMMISSION

TERRESTRIAL PHOTOVOLTAIC (PV) MODULES – DESIGN QUALIFICATION AND TYPE APPROVAL –

Part 1-1: Special requirements for testing of crystalline silicon photovoltaic (PV) modules

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61215-1-1 has been prepared by IEC technical committee 82: Solar photovoltaic energy systems.

This second edition cancels and replaces the first edition of IEC 61215-1-1, issued in 2016, and constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) A cyclic (dynamic) mechanical load test (MQT 20) added.
- b) A test for detection of potential-induced degradation (MQT 21) added.
- c) A bending test (MQT 22) for flexible modules added.
- d) A procedure for stress specific stabilization BO LID (MQT 19.3) added.

e) A final stabilization procedure for modules undergoing PID testing added.

Informative Annex A of IEC 61215-1:2021 explains the background and reasoning behind some of the more substantial changes that were made in the IEC 61215 series in progressing from edition 1 to edition 2.

The text of this International Standard is based on the following documents:

FDIS	Report on voting
82/1824/FDIS	82/1849/RVD

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

This standard is to be read in conjunction with IEC 61215-1:2021 and IEC 61215-2:2021.

A list of all parts in the IEC 61215 series, published under the general title *Terrestrial* photovoltaic (PV) modules – Design qualification and type approval, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

TERRESTRIAL PHOTOVOLTAIC (PV) MODULES – DESIGN QUALIFICATION AND TYPE APPROVAL –

Part 1-1: Special requirements for testing of crystalline silicon photovoltaic (PV) modules

1 Scope

This document lays down requirements for the design qualification of terrestrial photovoltaic modules suitable for long-term operation in open-air climates. The useful service life of modules so qualified will depend on their design, their environment and the conditions under which they are operated. Test results are not construed as a quantitative prediction of module lifetime. In climates where 98th percentile operating temperatures exceed 70 °C, users are recommended to consider testing to higher temperature test conditions as described in IEC TS 63126.

Users desiring qualification of PV products with lesser lifetime expectations are recommended to consider testing designed for PV in consumer electronics, as described in IEC 63163 (under development). Users wishing to gain confidence that the characteristics tested in IEC 61215 appear consistently in a manufactured product may wish to utilize IEC 62941 regarding quality systems in PV manufacturing.

This document is intended to apply to all crystalline silicon terrestrial flat plate modules.

This document does not apply to modules used with concentrated sunlight although it may be utilized for low concentrator modules (1 to 3 suns). For low concentration modules, all tests are performed using the irradiance, current, voltage and power levels expected at the design concentration.

The objective of this test sequence is to determine the electrical characteristics of the module and to show, as far as possible within reasonable constraints of cost and time, that the module is capable of withstanding prolonged exposure outdoors. Accelerated test conditions are empirically based on those necessary to reproduce selected observed field failures and are applied equally across module types. Acceleration factors may vary with product design and thus not all degradation mechanisms may manifest. Further general information on accelerated test methods including definitions of terms may be found in IEC 62506.

Some long-term degradation mechanisms can only reasonably be detected via component testing, due to long times required to produce the failure and necessity of stress conditions that are expensive to produce over large areas. Component tests that have reached a sufficient level of maturity to set pass/fail criteria with high confidence are incorporated into the IEC 61215 series via addition to Table 1 in IEC 61215-1:2021. In contrast, the tests procedures described in this series, in IEC 61215-2, are performed on modules.

This document defines PV technology dependent modifications to the testing procedures and requirements per IEC 61215-1:2021 and IEC 61215-2:2021.

2 Normative references

The normative references of IEC 61215-1:2021 and IEC 61215-2:2021 are applicable without modifications.

SOMMAIRE

AVANT-PROPOS	13
1 Domaine d'application	15
2 Références normatives	16
3 Termes et définitions	16
4 Échantillons d'essai	16
5 Marquage et documentation	
6 Essais	
7 Critères d'acceptation	
8 Défauts visuels majeurs	
9 Rapport	
10 Modifications	
11 Série et procédures d'essais	
11.1 Examen visuel (MQT 01)	
11.2 Détermination de la puissance maximale (MQT 02)	
11.3 Essai diélectrique (MQT 03)	
11.4 Mesurage des coefficients de température (MQT 04)	
11.5 Section de l'espace réservé, précédemment NMOT	17
11.6 Performances dans les STC (MQT 06.1)	17
11.7 Performances sous faible éclairement (MQT 07)	
11.8 Essai d'exposition en site naturel (MQT 08)	
11.9 Essai de tenue à l'échauffement localisé (MQT 09)	
11.9.1 Objet	
11.9.2Classification des interconnexions de cellules11.9.3Appareillage	
11.9.3 Appareillage 11.9.4 Procédure	
11.9.5 Mesurages finaux	
11.9.6 Exigences	
11.10 Essai de préconditionnement aux UV (MQT 10)	
11.11 Essai de cycle thermique (MQT 11)	
11.12 Essai humidité-gel (MQT 12)	18
11.13 Essai de chaleur humide (MQT 13)	18
11.14 Essai de robustesse des sorties (MQT 14)	
11.15 Essai de courant de fuite en milieu humide (MQT 15)	
11.16 Essai de charge mécanique statique (MQT 16)	
11.17 Essai à la grêle (MQT 17)	
11.18 Essai de la diode de dérivation (MQT 18)	
11.19 Stabilisation (MQT 19) 11.19.1 Définition de critères pour la stabilisation	
11.19.2 Procédures de stabilisation induite par la lumière	
11.19.3 Autres procédures de stabilisation	
11.19.4 Stabilisation initiale (MQT 19.1)	
11.19.5 Stabilisation finale (MQT 19.2)	
11.20 Essai de charge mécanique cyclique (dynamique) (MQT 20)	
11.21 Essai de dégradation induite du potentiel (MQT 21)	21
11.22 Essai de flexion (MQT 22)	
Figure 1 – Diagramme récapitulatif de l'essai MQT 19.2	21

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

MODULES PHOTOVOLTAÏQUES (PV) POUR APPLICATIONS TERRESTRES – QUALIFICATION DE LA CONCEPTION ET HOMOLOGATION –

Partie 1-1: Exigences particulières d'essai des modules photovoltaïques (PV) au silicium cristallin

AVANT-PROPOS

- 1) La Commission Électrotechnique Internationale (IEC) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de l'IEC). L'IEC a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. À cet effet, l'IEC entre autres activités publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de l'IEC"). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, en liaison avec l'IEC, participent également aux travaux. L'IEC collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- Les décisions ou accords officiels de l'IEC concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l'IEC intéressés sont représentés dans chaque comité d'études.
- 3) Les Publications de l'IEC se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de l'IEC. Tous les efforts raisonnables sont entrepris afin que l'IEC s'assure de l'exactitude du contenu technique de ses publications; l'IEC ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
- 4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de l'IEC s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de l'IEC dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de l'IEC et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
- 5) L'IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de l'IEC. L'IEC n'est responsable d'aucun des services effectués par les organismes de certification indépendants.
- 6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
- 7) Aucune responsabilité ne doit être imputée à l'IEC, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de l'IEC, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de l'IEC ou de toute autre Publication de l'IEC, ou au crédit qui lui est accordé.
- 8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.
- L'attention est attirée sur le fait que certains des éléments de la présente Publication de l'IEC peuvent faire l'objet de droits de brevet. L'IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevets et de ne pas avoir signalé leur existence.

La Norme internationale IEC 61215-1-1 a été établie par le comité d'études 82 de l'IEC: Systèmes de conversion photovoltaïque de l'énergie solaire.

Cette deuxième édition annule et remplace la première édition de l'IEC 61215-1-1, parue en 2016. Cette édition constitue une révision technique.

Cette édition inclut les modifications techniques majeures suivantes par rapport à l'édition précédente:

- a) ajout d'un essai de charge mécanique (dynamique) cyclique (MQT 20);
- b) ajout d'un essai de dégradation induite du potentiel (MQT 21);

- c) ajout d'un essai de flexion (MQT 22) dédié aux modules souples;
- d) ajout d'une procédure de stabilisation spécifique aux contraintes BO LID (MQT 19.3);
- e) ajout d'une procédure de stabilisation finale pour les modules soumis à l'essai PID.

L'Annexe informative A de l'IEC 61215-1:2021 explique le contexte et le raisonnement qui justifient certaines modifications les plus importantes apportées à la série IEC 61215 dans l'évolution de l'édition 1 à l'édition 2.

La présente version bilingue (2021-08) correspond à la version anglaise monolingue publiée en 2021-02.

La version française de cette norme n'a pas été soumise au vote.

Le présent document a été rédigé selon les Directives ISO/IEC, Partie 2.

La présente norme doit être utilisée conjointement avec l'IEC 61215-1:2021 et l'IEC 61215- 2:2021.

Une liste de toutes les parties de la série IEC 61215, publiées sous le titre général *Modules photovoltaïques (PV) pour applications terrestres – Qualification de la conception et homologation,* peut être consultée sur le site web de l'IEC.

Le comité a décidé que le contenu du présent document ne sera pas modifié avant la date de stabilité indiquée sur le site web de l'IEC sous "http://webstore.iec.ch" dans les données relatives au document recherché. À cette date, le document sera

- reconduit,
- supprimé,
- remplacé par une édition révisée, ou
- amendé.

MODULES PHOTOVOLTAÏQUES (PV) POUR APPLICATIONS TERRESTRES – QUALIFICATION DE LA CONCEPTION ET HOMOLOGATION –

Partie 1-1: Exigences particulières d'essai des modules photovoltaïques (PV) au silicium cristallin

1 Domaine d'application

Le présent document établit les exigences pour la qualification de la conception des modules photovoltaïques (PV) pour applications terrestres adaptés à une utilisation de longue durée dans les climats à l'air libre. La durée de vie utile des modules ainsi qualifiés dépend de leur conception, de leur environnement et de leurs conditions de fonctionnement. Les résultats d'essai ne sont pas considérés comme une prévision quantitative de la durée de vie des modules. Sous des climats pour lesquels les températures de fonctionnement du 98^e percentile dépassent 70 °C, il est recommandé aux utilisateurs d'envisager d'effectuer des essais dans des conditions d'essai à des températures plus élevées telles que décrites dans l'IEC TS 63126.

Il est recommandé aux utilisateurs qui souhaitent qualifier des produits PV ayant une durée de vie moins longue d'envisager des essais conçus pour des produits PV utilisés dans l'électronique grand public, comme cela est spécifié dans l'IEC 63163 (en cours d'élaboration). Les utilisateurs qui souhaitent être assurés qu'un produit fabriqué présente de manière cohérente les caractéristiques soumises aux essais dans le cadre de l'IEC 61215 peuvent vouloir utiliser l'IEC 62941 relative aux systèmes de qualité pour la fabrication des modules photovoltaïques (PV).

Le présent document est destiné à s'appliquer à tous les modules à plaque plane au silicium cristallin pour applications terrestres.

Le présent document ne s'applique pas aux modules utilisés avec un ensoleillement intense, même s'il peut être utilisé pour les modules à faible concentration (ensoleillement 1 à 3). Pour les modules à faible concentration, tous les essais sont réalisés en utilisant les niveaux d'éclairement, de courant, de tension et de puissance prévus à la concentration théorique.

Cette séquence d'essai est destinée à déterminer les caractéristiques électriques du module et de démontrer, dans toute la mesure du possible et avec des contraintes de coût et de temps raisonnables, que le module est capable de supporter une exposition prolongée en site naturel. Les conditions d'essais accélérés sont fondées de manière empirique sur les conditions nécessaires pour reproduire les défaillances sur site observées sélectionnées et sont appliquées de manière égale aux types de modules. Les facteurs d'accélération peuvent varier avec la conception du produit et ainsi les mécanismes de dégradation peuvent ne pas tous se produire. D'autres informations générales concernant les méthodes d'essais accélérés, y compris les définitions des termes, peuvent être consultées dans l'IEC 62506.

Certains mécanismes de dégradation de longue durée ne peuvent être raisonnablement détectés que par des essais de composants, en raison des longs délais exigés pour produire la défaillance et de l'existence nécessaire de conditions de contrainte dont la réalisation est coûteuse sur de grandes surfaces. Les essais de composants qui ont atteint un niveau de maturité suffisant pour établir des critères d'acceptation/refus en toute fiabilité sont intégrés dans la série IEC 61215 par le biais d'un ajout dans le Tableau 1 de l'IEC 61215-1:2021. En revanche, les procédures d'essai décrites dans cette série - IEC 61215-2 - sont réalisées sur des modules.

Le présent document définit les modifications dépendantes de la technologie photovoltaïque, apportées aux exigences et procédures d'essai de l'IEC 61215-1:2021 et de l'IEC 61215- 2:2021.

2 Références normatives

Les références normatives de l'IEC 61215-1:2021 et de l'IEC 61215-2:2021 s'appliquent sans modification.