

Edition 1.0 2022-04

TECHNICAL SPECIFICATION

Electrical energy storage (EES) systems – Part 2-2: Unit parameters and testing methods – Application and performance testing

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 13.020.30

ISBN 978-2-8322-1104-1

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FC	DREWO	RD	5		
IN	INTRODUCTION				
1	Scop	e	8		
2	Norm	ative references	8		
3	Term	s, definitions and abbreviated terms	8		
	3.1	Terms and definitions			
	3.2	Abbreviated terms			
4	Appli	cation of EES system			
•	4.1	General			
	4.2	Class A applications			
	4.2.1	Frequency control			
	4.2.2				
	4.2.3	Fluctuation reduction of PV and wind farms			
	4.2.4	Reactive-power voltage control			
	4.2.5				
	4.3	Class B applications			
	4.3.1	Peak shaving			
	4.3.2	-			
	4.3.3	0			
	4.4	Class C applications			
5	Para	meter testing methods for application			
•	5.1	Parameter tests			
	5.1.1	General			
	5.1.2				
	5.1.3	Roundtrip efficiency			
	5.1.4	Step response time and ramp rate			
	5.1.5	Auxiliary power consumption			
	5.1.6	Self-discharge			
	5.1.7	SOC			
	5.2	Duty cycle performance tests			
	5.2.1	General			
	5.2.2				
	5.2.3				
	5.3	Test items for each application			
6	Duty	cycle for specific applications			
	6.1	General			
	6.2	Frequency control			
	6.2.1	Frequency control duty cycle			
	6.2.2	Primary/secondary/tertiary frequency control duty cycle			
	6.2.3	Deviation control of frequency			
	6.3	Fluctuation reduction of PV and wind farm			
	6.4	Reactive-power voltage control			
	6.5	Voltage sag mitigation			
	6.6	Peak shaving			
	6.6.1	"One charge-one discharge" mode			
	6.6.2	"Two charges-two discharges" mode			

6.7	Renewable firming	29
6.8	Islanded grid	30
6.9	Back-up power	32
6.9.1	General	32
6.9.2	Grid outage test	32
6.9.3	•	
6.9.4	Unbalanced load test	
6.9.5	Function test	
6.9.6	,	
•	normative) Numerical data for duty cycle	
Bibliograp	hy	66
-	Frequency control duty cycle	16
	Primary frequency control signal – 24 h duty cycle with 30 s discharge hour shown over a) 24 h and b) 2 h	17
	Secondary frequency control signal – 24 h duty cycle with 20 min discharge r shown over a) 24 h and b) 3 h	18
Figure 4 –	Example of droop active power frequency control with a dead band	19
Figure 5 –	Duty cycle of fluctuation reduction of PV (photovoltaic energy systems)	20
Figure 6 -	Duty cycle of fluctuation reduction of wind farm	21
Figure 7 -	Duty cycle of fluctuation reduction of wind farm (low standard deviation)	21
	Duty cycle of fluctuation reduction of wind farm (average standard	22
Figure 9 -	Duty cycle of fluctuation reduction of wind farm (high standard deviation)	22
Figure 10	 Reactive-power voltage control test profile 	23
-	– Voltage sag mitigation test profile (test level: 80 %)	
-	– Voltage sag mitigation test profile (test level: 70 %)	
-	 Voltage sag mitigation test profile (test level: 40 %) 	
-	 Voltage sag mitigation test profile (test level: 0 %) 	
-	 Duty cycle for peak shaving application of "one charge-one discharge" 	20
mode		28
	 Duty cycle for peak shaving of "two charges-two discharges" mode 	
-	 Duty cycle for renewable firming mode 	
	 Duty cycle for fluctuation reduction of renewable energy sources (power) 	
	ency control	31
	 Duty cycle for fluctuation reduction of renewable energy sources (power) equency control 	31
	 Duty cycle without fluctuation reduction of renewable energy sources frequency control 	32
	Test items for each application	
Table 2 –	Reactive-power voltage control test profile	23
Table A.1	- Numerical data of Figure 1 (duty cycle of frequency control)	35
	 Numerical data of Figure 5 (duty cycle of fluctuation reduction of PV aic energy systems)) 	40
	 Numerical data of Figure 7 (duty cycle of fluctuation reduction of wind 	
farm (low	standard deviation))	44

Table A.4 – Numerical data of Figure 8 (duty cycle of fluctuation reduction of wind farm (average standard deviation))	45
Table A.5 – Numerical data of Figure 9 (duty cycle of fluctuation reduction of wind farm (high standard deviation))	46
Table A.6 – Numerical data of Figure 17 (duty cycle for renewable firming mode)	47
Table A.7 – Numerical data of Figure 18 (duty cycle for fluctuation reduction of renewable energy sources (power) and frequency control)	51
Table A.8 – Numerical data of Figure 19 (duty cycle for fluctuation reduction of renewable energy sources (power) without frequency control)	56
Table A.9 – Numerical data of Figure 20 (duty cycle without fluctuation reduction of renewable energy sources (power) or frequency control)	61

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTRICAL ENERGY STORAGE (EES) SYSTEMS -

Part 2-2: Unit parameters and testing methods – Application and performance testing

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 62933-2-2 has been prepared by IEC technical committee TC 120: Electrical Energy Storage (EES) Systems. It is a Technical Specification.

The text of this Technical Specification is based on the following documents:

Draft	Report on voting
120/249/DTS	120/264A/RVDTS

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Specification is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

A list of all parts in the IEC 62933 series, published under the general title *Electrical energy storage (EES) systems*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.
- •

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

Considering the wide variety of applications of EES systems, it is becoming important to define the typical application of each EES system depending on its purpose and control types, and also important to define the corresponding performance testing methods and procedures of the EES system.

IEC 62933-2-1 describes the general specification of unit parameters and testing methods for EES systems, in which details of duty cycles for typical grid applications and the associated performance metrics and testing methods are not covered.

This part of IEC 62933 focuses on developing generic duty cycles for applications, identifying relevant performance metrics and developing performance testing methods and procedures for EES systems.

ELECTRICAL ENERGY STORAGE (EES) SYSTEMS -

Part 2-2: Unit parameters and testing methods – Application and performance testing

1 Scope

This part of IEC 62933 defines testing methods and duty cycles to validate the EES system's technical specification for the manufacturers, designers, operators, utilities and owners of the EES systems which evaluate the performance of the EES systems for various applications. The following items are covered in this document. The energy storage devices and technologies are outside the scope of this document:

- application;
- performance testing methods;
- duty cycles for specific application.

This document will be used as a reference when selecting testing items and their corresponding evaluation methods.

This document considers applications such as:

- frequency control;
- primary/secondary/tertiary frequency control;
- fluctuation reduction of PV and wind farm;
- reactive-power voltage control;
- power quality events mitigation;
- peak shaving;
- renewable firming;
- back-up power;
- islanded grid.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 62933-1, Electrical energy storage (EES) systems – Part 1: Vocabulary

IEC 62933-2-1, *Electrical energy storage (EES) systems – Part 2: Unit parameters and testing methods – General specification*