

SVENSK STANDARD SS-EN IEC 61158-4-4, utg 4:2023

Fastställd

Sida

Ansvarig kommitté

2023-12-13

1 (49)

SEK TK 65

© Copyright SEK Svensk Elstandard. Reproduction in any form without permission is prohibited.

Industriell processtyrning – Fältbuss – Del 4-4: Specifikation av protokoll i datalänksskiktet – Delar i fältbuss, Typ 4

Industrial communication networks – Fieldbus specifications – Part 4-4: Data-link layer protocol specification – Type 4 elements

Som svensk standard gäller europastandarden EN IEC 61158-4-4:2023. Den svenska standarden innehåller den officiella engelska språkversionen av EN IEC 61158-4-4:2023.

Nationellt förord

Europastandarden EN IEC 61158-4-4:2023

består av:

- europastandardens ikraftsättningsdokument, utarbetat inom CENELEC
- IEC 61158-4-4, Fourth edition, 2023 Industrial communication networks Fieldbus specifications - Part 4-4: Data-link layer protocol specification - Type 4 elements

utarbetad inom International Electrotechnical Commission, IEC.

Tidigare fastställd svensk standard SS-EN IEC 61158-4-4, utg 3:2019 med eventuella tillägg, ändringar och rättelser gäller ej fr o m 2026-04-26.

ICS 35.110.00; 35.100.20; 25.040.40

Standarder underlättar utvecklingen och höjer elsäkerheten

Det finns många fördelar med att ha gemensamma tekniska regler för bl a mätning, säkerhet och provning och för utförande, skötsel och dokumentation av elprodukter och elanläggningar.

Genom att utforma sådana standarder blir säkerhetsfordringar tydliga och utvecklingskostnaderna rimliga samtidigt som marknadens acceptans för produkten eller tjänsten ökar.

Många standarder inom elområdet beskriver tekniska lösningar och metoder som åstadkommer den elsäkerhet som föreskrivs av svenska myndigheter och av EU.

SEK är Sveriges röst i standardiseringsarbetet inom elområdet

SEK Svensk Elstandard svarar för standardiseringen inom elområdet i Sverige och samordnar svensk medverkan i internationell och europeisk standardisering. SEK är en ideell organisation med frivilligt deltagande från svenska myndigheter, företag och organisationer som vill medverka till och påverka utformningen av tekniska regler inom elektrotekniken.

SEK samordnar svenska intressenters medverkan i SEKs tekniska kommittéer och stödjer svenska experters medverkan i internationella och europeiska projekt.

Stora delar av arbetet sker internationellt

Utformningen av standarder sker i allt väsentligt i internationellt och europeiskt samarbete. SEK är svensk nationalkommitté av International Electrotechnical Commission (IEC) och Comité Européen de Normalisation Electrotechnique (CENELEC).

Standardiseringsarbetet inom SEK är organiserat i referensgrupper bestående av ett antal tekniska kommittéer som speglar hur arbetet inom IEC och CENELEC är organiserat.

Arbetet i de tekniska kommittéerna är öppet för alla svenska organisationer, företag, institutioner, myndigheter och statliga verk. Den årliga avgiften för deltagandet och intäkter från försäljning finansierar SEKs standardiseringsverksamhet och medlemsavgift till IEC och CENELEC.

Var med och påverka!

Den som deltar i SEKs tekniska kommittéarbete har möjlighet att påverka framtida standarder och får tidig tillgång till information och dokumentation om utvecklingen inom sitt teknikområde. Arbetet och kontakterna med kollegor, kunder och konkurrenter kan gynnsamt påverka enskilda företags affärsutveckling och bidrar till deltagarnas egen kompetensutveckling.

Du som vill dra nytta av dessa möjligheter är välkommen att kontakta SEKs kansli för mer information.

SEK Svensk Elstandard

Box 1284 164 29 Kista Tel 08-444 14 00 www.elstandard.se

EUROPEAN STANDARD NORME EUROPÉENNE

EUROPÄISCHE NORM

EN IEC 61158-4-4

April 2023

ICS 25.040.40; 35.100.20; 35.110

Supersedes EN IEC 61158-4-4:2019

English Version

Industrial communication networks - Fieldbus specifications - Part 4-4: Data-link layer protocol specification - Type 4 elements (IEC 61158-4-4:2023)

Réseaux de communication industriels - Spécifications des bus de terrain - Partie 4-4: Spécification du protocole de la couche liaison de données - Eléments de type 4 (IEC 61158-4-4:2023) Industrielle Kommunikationsnetze - Feldbusse - Teil 4-4:
Protokollspezifikation des Data-Link Layer
(Sicherungsschicht) - Typ 4-Elemente
(IEC 61158-4-4:2023)

This European Standard was approved by CENELEC on 2023-04-26. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2023 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

Ref. No. EN IEC 61158-4-4:2023 E

European foreword

The text of document 65C/1202/FDIS, future edition 4 of IEC 61158-4-4, prepared by SC 65C "Industrial networks" of IEC/TC 65 "Industrial-process measurement, control and automation" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 61158-4-4:2023.

The following dates are fixed:

- latest date by which the document has to be implemented at national (dop) 2024-01-26 level by publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting with the (dow) 2026-04-26 document have to be withdrawn

This document supersedes EN IEC 61158-4-4:2019 and all of its amendments and corrigenda (if any).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Any feedback and questions on this document should be directed to the users' national committee. A complete listing of these bodies can be found on the CENELEC website.

Endorsement notice

The text of the International Standard IEC 61158-4-4:2023 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standard indicated:

IEC 61158-1 NOTE Approved as EN IEC 61158-1

IEC 61158-2 NOTE Approved as EN IEC 61158-2

IEC 61158-3-4 NOTE Approved as EN IEC 61158-3-4

IEC 61158-5-4 NOTE Approved as EN IEC 61158-5-4

IEC 61158-6-4 NOTE Approved as EN IEC 61158-6-4

IEC 61784-1-4 NOTE Approved as EN IEC 61784-1-4

IEC 61784-2-4 NOTE Approved as EN IEC 61784-2-4

Annex ZA (normative)

Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cencenelec.eu.

<u>Publication</u>	<u>Year</u>	<u>Title</u>	EN/HD	<u>Year</u>
ISO/IEC 7498-1	-	Information technology - Open Systems Interconnection - Basic reference model: The basic model	-	-
ISO/IEC 7498-3	-	Information technology - Open Systems Interconnection - Basic reference model: Naming and addressing	-	-
ISO/IEC 10731	-	Information technology - Open Systems Interconnection - Basic Reference Model - Conventions for the definition of OSI services	-	-

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2023 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland

Tel.: +41 22 919 02 11 info@iec.ch

www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublishedStay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 300 terminological entries in English and French, with equivalent terms in 19 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Edition 4.0 2023-03

INTERNATIONAL STANDARD

Industrial communication networks – Fieldbus specifications – Part 4-4: Data-link layer protocol specification – Type 4 elements

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 25.040.40; 35.100.20; 35.110

ISBN 978-2-8322-6574-1

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

F	OREWO	RD	4
IN	ITRODU	ICTION	6
1	Scop	e	7
	1.1	General	7
	1.2	Specifications	7
	1.3	Procedures	7
	1.4	Applicability	
	1.5	Conformance	7
2	Norm	native references	8
3	Term	s, definitions, symbols and abbreviated terms	8
	3.1	Reference model terms and definitions	8
	3.2	Service convention terms and definitions	10
	3.3	Terms and definitions	11
	3.4	Symbols and abbreviations	14
	3.4.1	Constants, variables, counters and queues	14
	3.4.2		
4	Data	Link Protocol Definition	14
	4.1	Overview of the DL-protocol	14
	4.1.1	·	
	4.1.2		
	4.1.3		
	4.1.4		
	4.2	General structure and encoding of PhIDUs and DLPDUs, and related	
		elements of procedure	26
	4.2.1	PhIDU structure and encoding	26
	4.2.2	Frame check sequence	27
	4.2.3	Common DLPDU structure, encoding and elements of procedure	28
	4.3	DLPDU-specific structure, encoding and elements of procedure	
	4.3.1	DLPDU types	33
	4.3.2		
	4.3.3	Unconfirmed DLPDU	34
	4.3.4	Acknowledge DLPDU	36
	4.3.5	1 ,	
	4.4	DL-service elements of procedure	
	4.4.1	Receipt of a DL-UNITDATA request primitive	37
	4.4.2		
	4.4.3	· · · · · · · · · · · · · · · · · · ·	39
	4.4.4	- · · · · · · · · · · · · · · · · · · ·	
	4.5	Route mechanism	
	4.5.1	, , , , , , , , , , , , , , , , , , ,	
	4.5.2	1 31	
	4.5.3	S .	
	4.6	Link-access system	
	4.7	Local variables, counters and queues	
	4.7.1	· ,	
	4.7.2	, ,	
	4.7.3	V(NA) – node-address	44

4.7.4	V(NDLE) – number of DLEs	44	
4.7.5	V(PNR) – permitted number of retries	44	
4.7.6	V(DC) – device class (simple or normal)	44	
4.7.7	V(BR) – bit rate		
4.7.8	V(MID) – max indication delay		
4.7.9	V(DMRT) – default max retry time		
4.7.10	Q(UR) – user request queue		
4.7.11	C(LC) link access counter		
4.7.12	C(LIC) – link idle counter		
Dibilography.		40	
Figure 1 – Re	elationship of PhE, DLE and DLS-user	15	
	LE state diagram for confirmed and unconfirmed, unacknowledged	17	
	LE state diagram for confirmed acknowledged DLPDUs		
Figure 4 – DI	LE state diagram for unconfirmed acknowledged DLPDUs	19	
Figure 5 – Fu	ıll duplex DLE receive state diagram	20	
Figure 6 – Fu	ıll duplex DLE transmit state diagram	20	
Figure 7 – Li	nk access example	23	
Figure 8 – Si	mple Type 4-route format	28	
Figure 9 – Ex	ktended Type 4-route format	29	
Figure 10 – 0	Complex Type 4-route format	29	
Figure 11 – I	mmediate Type 4-route format	30	
Figure 12 – I	P Type 4-route format	30	
Figure 13 – 0	Control-status format	31	
Figure 14 – [Data-field-format, one octet	32	
Figure 15 – [Data field format, two octets	32	
Figure 16 – S	Source / destination designator	41	
_	Simple Type 4-route generation		
Figure 18 – E	Extended Type 4-route generation	42	
Figure 19 – 0	Complex and IP Type 4-route generation	42	
Figure 20 – Simple DL-route generation			
_	Extended DL-route generation		
	Complex and IP DL-route generation		
Tahla 1 Su	mmary structure of DLPDUs	22	
	ructure of confirmed DLPDUs		
	ucture of unconfirmed DLPDUs		
	ructure of acknowledge DLPDUructure of immediate-reply DLPDU		
rapie 5 – Str	ucture of immediate-rediv DLPDU		

INTERNATIONAL ELECTROTECHNICAL COMMISSION

INDUSTRIAL COMMUNICATION NETWORKS – FIELDBUS SPECIFICATIONS –

Part 4-4: Data-link layer protocol specification – Type 4 elements

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

Attention is drawn to the fact that the use of the associated protocol type is restricted by its intellectual-property-right holders. In all cases, the commitment to limited release of intellectual-property-rights made by the holders of those rights permits a layer protocol type to be used with other layer protocols of the same type, or in other type combinations explicitly authorized by its intellectual-property-right holders.

NOTE Combinations of protocol types are specified in the IEC 61784-1 series and the IEC 61784-2 series.

IEC 61158-4-4 has been prepared by subcommittee 65C: Industrial networks, of IEC technical committee 65: Industrial-process measurement, control and automation. It is an International Standard.

This fourth edition cancels and replaces the third edition published in 2018. This edition constitutes a technical revision.

This edition includes the following significant technical change with respect to the previous

a) Use of extended data size for DLS-user data. This extension is restricted to nodes operating on a P-NET IP network.

The text of this International Standard is based on the following documents:

Draft	Report on voting	
65C/1202/FDIS	65C/1243/RVD	

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all the parts of the IEC 61158 series, under the general title *Industrial communication* networks – Fieldbus specifications, can be found on the IEC web site.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- · reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

INTRODUCTION

This document is one of a series produced to facilitate the interconnection of automation system components. It is related to other standards in the set as defined by the "three-layer" fieldbus reference model described in IEC 61158-1.

The data-link protocol provides the data-link service by making use of the services available from the physical layer. The primary aim of this document is to provide a set of rules for communication expressed in terms of the procedures to be carried out by peer data-link entities (DLEs) at the time of communication. These rules for communication are intended to provide a sound basis for development in order to serve a variety of purposes:

- a) as a guide for implementors and designers;
- b) for use in the testing and procurement of equipment;
- c) as part of an agreement for the admittance of systems into the open systems environment;
- d) as a refinement to the understanding of time-critical communications within OSI.

This document is concerned, in particular, with the communication and interworking of sensors, effectors and other automation devices. By using this document together with other standards positioned within the OSI or fieldbus reference models, otherwise incompatible systems could work together in any combination.

INDUSTRIAL COMMUNICATION NETWORKS – FIELDBUS SPECIFICATIONS –

Part 4-4: Data-link layer protocol specification – Type 4 elements

1 Scope

1.1 General

The data-link layer provides basic time-critical messaging communications between devices in an automation environment.

This protocol provides a means of connecting devices through a partial mesh network, such that most failures of an interconnection between two devices can be circumvented. In common practice the devices are interconnected in a non-redundant hierarchical manner reflecting application needs.

1.2 Specifications

This document specifies

- a) procedures for the timely transfer of data and control information from one data-link user entity to a peer user entity, and among the data-link entities forming the distributed data-link service provider;
- b) the structure of the fieldbus DLPDUs used for the transfer of data and control information by the protocol of this document, and their representation as physical interface data units.

1.3 Procedures

The procedures are defined in terms of

- a) the interactions between peer DL-entities (DLEs) through the exchange of fieldbus DLPDUs;
- b) the interactions between a DL-service (DLS) provider and a DLS-user in the same system through the exchange of DLS primitives;
- c) the interactions between a DLS-provider and a Ph-service provider in the same system through the exchange of Ph-service primitives.

1.4 Applicability

These procedures are applicable to instances of communication between systems which support time-critical communications services within the data-link layer of the OSI or fieldbus reference models, and which require the ability to interconnect in an open systems interconnection environment.

Profiles provide a simple multi-attribute means of summarizing an implementation's capabilities, and thus its applicability to various time-critical communications needs.

1.5 Conformance

This document also specifies conformance requirements for systems implementing these procedures. This document does not contain tests to demonstrate compliance with such requirements.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE All parts of the IEC 61158 series, as well as the IEC 61784-1 series and the IEC 61784-2 series are maintained simultaneously. Cross-references to these documents within the text therefore refer to the editions as dated in this list of normative references.

ISO/IEC 7498-1, Information technology – Open Systems Interconnection – Basic Reference Model: The Basic Model

ISO/IEC 7498-3, Information technology – Open Systems Interconnection – Basic Reference Model: Naming and addressing

ISO/IEC 10731, Information technology – Open Systems Interconnection – Basic Reference Model – Conventions for the definition of OSI services