

SVENSK STANDARD

SS-EN IEC 60071-2, utg 3:2024

2024-03-20

© Copyright SEK Svensk Elstandard. Reproduction in any form without permission is prohibited.

REDLINE VERSION

Isolationskoordination – Del 2: Tillämpningsanvisningar

Insulation co-ordination – Part 2: Application guidelines

En så kallad "Redline version" (RLV) innehåller både standarden som fastställts som SS och en ändringsmarkerad IEC-standard. Alla tillägg och borttagningar sedan den tidigare utgåvan av IEC-standarden är markerade med färg. Med en RLV sparar du mycket tid när du ska identifiera och bedöma aktuella ändringar i standarden. SEK Svensk Elstandard kan bara ge ut RLV i de fall den finns tillgänglig från IEC.

Edition 5.0 2023-05 REDLINE VERSION

INTERNATIONAL STANDARD

HORIZONTAL PUBLICATION

Insulation co-ordination – Part 2: Application guidelines

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 29.080.30

ISBN 978-2-8322-7074-5

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FC	DREWC	RD	9
1	Scop	e	11
2	Norm	native references	11
3	Term	is, definitions, abbreviated terms and symbols	12
	3.1	Terms and definitions	12
	3.2	Abbreviated terms	12
	3.3	Symbols	12
4	Cond	epts governing the insulation co-ordination	18
5	Repr	esentative voltage stresses in service	19
	5.1	Origin and classification of voltage stresses	19
	5.2	Characteristics of overvoltage protection devices	20
	5.2.1	General remarks	20
	5.2.2	Metal-oxide surge arresters without gaps (MOSA)	20
	5.2.3	Line surge arresters (LSA) for overhead transmission and distribution	
		lines	22
	5.3	General approach for the determination of representative voltages and	22
	531	Continuous (nower-frequency) voltage	23
	5.3.2	Temporary overvoltages	23
	533	Slow-front overvoltages	26
	5.3.4	Fast-front overvoltages	
	5.3.5	Very-fast-front overvoltages	
	5.4	Determination of representative overvoltages by detailed simulations	37
	5.4.1	General overview	37
	5.4.2	Temporary overvoltages	37
	5.4.3	Slow-front overvoltages	38
	5.4.4	Fast-front overvoltages	39
	5.4.5	Very-fast-front overvoltages	43
6	Co-o	rdination withstand voltage	44
	6.1	Insulation strength characteristics	44
	6.1.1	General	44
	6.1.2	Influence of polarity and overvoltage shapes	46
	6.1.3	Phase-to-phase and longitudinal insulation	47
	6.1.4	Influence of weather conditions on external insulation	47
	6.1.5	Probability of disruptive discharge of insulation	47
	6.2	Performance criterion	49
	6.3	Insulation co-ordination procedures	49
	6.3.1	General	49
	0.3.2	voltage and temporary overvoltage	
	6.3.3	Insulation co-ordination procedures for slow-front overvoltages	51
	6.3.4	Insulation co-ordination procedures for fast-front overvoltages	56
	6.3.5	Insulation co-ordination procedures for very-fast-front overvoltages	57
7	Requ	ired withstand voltage	57
	7.1	General remarks	57
	7.2	Atmospheric correction	57
	7.2.1	General remarks	57

	7.2.2	Altitude correction	58
	7.3 S	afety factors	59
	7.3.1	General	59
	7.3.2	Ageing	60
	7.3.3	Production and assembly dispersion	60
	7.3.4	Inaccuracy of the withstand voltage	60
	7.3.5	Recommended safety factors (<i>K_s</i>)	60
8	Standa	rd withstand voltage and testing procedures	61
	8.1 G	General remarks	61
	8.1.1	Overview	61
	8.1.2	Standard switching impulse withstand voltage	61
	8.1.3	Standard lightning impulse withstand voltage	61
	8.2 T	est conversion factors	62
	8.2.1	Range I	62
	8.2.2	Range II	62
	8.3 D	etermination of insulation withstand by type tests	63
	8.3.1	Test procedure dependency upon insulation type	63
	8.3.2	Non-self-restoring insulation	
	833	Self-restoring insulation	63
	834	Mixed insulation	60
	835	Limitations of the test procedures	
	836	Selection of the type test procedures	65
	837	Selection of the type test voltages	65
۵	Snecia	L considerations for overhead lines apparatus and transmission line	66
0	0.1 0		66
	0.1.1	General remarks	66
	9.1.1	Insulation co ordination for operating voltages and temporary	00
	9.1.2	overvoltages	67
	9.1.3	Insulation co-ordination for slow-front overvoltages	67
	9.1.4	Insulation co-ordination for lightning fast-front overvoltages	68
	9.2 C	able line	69
	9.2.1	General	69
	9.2.2	Insulation co-ordination for operating voltages and temporary	69
	923	Insulation co-ordination for slow-front overvoltages	69
	924	Insulation co-ordination for fast-front overvoltages	70
	925	Overvoltage protection of cable lines	70
	93 6	(as insulated transmission line) / GIB (Gas-insulated busduct)	70
	031	General	71
	932	Insulation co-ordination for operating voltages and temporary	
	9.0.2	overvoltages	71
	9.3.3	Insulation co-ordination for slow-front overvoltages	71
	9.3.4	Insulation co-ordination for fast-front overvoltages	72
	9.3.5	Overvoltage protection of GIL/GIB lines	72
	9.4 🗧	pecial considerations for substations Substation	68
	9.4.1	General- remarks	72
	9.4.2	Insulation co-ordination for overvoltages	73
An	inex A (in	formative) Determination of temporary overvoltages due to earth faults	76
An	inex B (in	formative) Weibull probability distributions	80

B.1	General remarks	80
B.2	Disruptive discharge probability of external insulation	81
B.3	Cumulative frequency distribution of overvoltages	84
Annex C to line en	(informative) Determination of the representative slow-front overvoltage due ergization and re-energization	86
C.1	General remarks	
C.2	Probability distribution of the representative amplitude of the prospective overvoltage phase-to-earth	86
C.3	Probability distribution of the representative amplitude of the prospective overvoltage phase-to-phase	89
C.4	Insulation characteristic	91
C.5	Numerical example	93
Annex D	(informative) Transferred overvoltages in transformers	100
D.1	General remarks	100
D.2	Transferred temporary overvoltages	101
D.3	Capacitively transferred surges	101
D.4	Inductively transferred surges	103
Annex E	(informative) Determination of lightning overvoltages by simplified method	107
F 1	General remarks	107
E.1 F 2	Determination of the limit distance (X_{r})	107
<u>с.</u> г	Determination of the minit detailed $(\pi \beta)$	107
E.Z.	Protection with arresters in the substation	100
E.Z.4	Z Sell-protection of substation	100
E.3	Estimation of the representative lightning overvoltage amplitude	109
E.3.	I General	109
E.3.4	2 Shielding penetration	109
E.3.	Back flashovers	110
E.4	Simplified method approach	I I Z
E.D	Assumed maximum value of the representative lightning overvoltage	114
data	(informative) Calculation of air gap breakdown strength from experimental	116
E 1	Conoral	116
□ □ □	Insulation response to nower frequency voltages	116
Г.2 Г.2	Insulation response to slow front overveltages	110
F.3	Insulation response to fact front overvoltages	117
F.4 Annox G	(informative) Examples of insulation co-ordination procedure	122
Annex G		122
G.1		122
G.2	Numerical example for a system in range I (with nominal voltage of 230 KV)	122
G.2.		122
G.2.	2 Part 1: no special operating conditions	123
G.2.3	3 Part 2: influence of capacitor switching at station 2	130
G.2.4	4 Part 3: flow charts related to the example of Clause G.2	132
G.3	Numerical example for a system in range II (with nominal voltage of 735 kV)	137
G.3.	1 General	137
G.3.	Step 1: determination of the representative overvoltages – values of $U_{\rm rp}$	137
G.3.	3 Step 2: determination of the co-ordination withstand voltages –	
	values of $U_{\rm CW}$	138
G.3.4	Step 3: determination of the required withstand voltages – values of $U_{\rm TW}$	139

G.3.5	5 Step 4: conversion to switching impulse withstand voltages (SIWV)	140
G.3.6	S Step 5: selection of standard insulation levels	141
G.3.7	Considerations relative to phase-to-phase insulation co-ordination	141
G.3.8	Phase-to-earth clearances	142
G.3.9	Phase-to-phase clearances	143
G.4	Numerical example for substations in distribution systems with $U_{\sf M}$ up to	
	36 kV in range I	143
G.4.1	General	143
G.4.2	Step 1: determination of the representative overvoltages – values of U _{rp}	144
G.4.3	Step 2: determination of the co-ordination withstand voltages – values of $U_{\rm CW}$	144
G.4.4	Step 3: determination of required withstand voltages – values of U_{rw}	145
G.4.5	5 Step 4: conversion to standard short-duration power-frequency and	146
GAR	Step 5: selection of standard withstand voltages	1/17
G 4 7	Summary of insulation co-ordination procedure for the example of	147
0.4.7	Clause G.4	147
Annex H (example	informative) Atmospheric correction – Altitude correction application	149
Н.1	General principles	149
H.1.1	Atmospheric correction in standard tests	149
H.1.2	Task of atmospheric correction in insulation co-ordination	150
H.2	Atmospheric correction in insulation co-ordination	152
H.2.1	Factors for atmospheric correction	152
H.2.2	General characteristics for moderate climates	152
H.2.3	Special atmospheric conditions	153
H.2.4	Altitude dependency of air pressure	154
H.3	Altitude correction	155
H.3.1	Definition of the altitude correction factor	155
H.3.2	Principle of altitude correction	156
H.3.3	Altitude correction for standard equipment operating at altitudes up to 1 000 m	157
H.3.4	Altitude correction for standard equipment operating at altitudes above	157
H 4	Selection of the exponent <i>m</i>	158
н 4 1	General	158
H 4 2	Derivation of exponent m for switching impulse voltage	158
H.4.3	Derivation of exponent <i>m</i> for critical switching impulse voltage	
Annex I (i	nformative) Evaluation method of non-standard lightning overvoltage shape entative voltages and overvoltages	164
1 1	General remarks	161
1. I I 2	Lightning overvoltage shape	16/
1.2 3	Evaluation method for GIS	16/
1.J 2 1	Everiments	16/
1.3.1	Experiments	165
1.5.2	Evaluation method for transformer	165
1.4	Experiments	165
1.4.2	Evaluation of overvoltage shape	166
	0	

Annex J (informative) Insulation co-ordination for very-fast-front overvoltages in UHV substations	171
J.1 General	171
J.2 Influence of disconnector design	171
J.3 Insulation co-ordination for VFFO	172
Annex K (informative) Application of shunt reactors to limit TOV and SFO of high voltage overhead transmission line	174
K.1 General remarks	174
K.2 Limitation of TOV and SFO	174
K.3 Application of the neutral grounding reactor to limit resonance overvoltage and secondary arc current	174
K.4 SFO and Beat frequency overvoltage limited by neutral arrester	175
K.5 SFO and FFO due to SR de-energization	176
K.6 Limitation of TOV by Controllable SR	176
K.7 Insulation coordination of the SR and neutral grounding reactor	176
K.8 Self-excitation TOV of synchronous generator	176
Annex L (informative) Calculation of lightning stroke rate and lightning outage rate	177
L.1 General	177
L.2 Description in CIGRE [37]	177
L.3 Flash program in IEEE [49]	178
L.4 [Case Study] Calculation of Lightning Stroke Rate and Lightning Outage Rate (Appendix D in CIGRE TB 839 [37])	178
L.4.1 Basic flow of calculation method	178
L.4.2 Comparison of Calculation Results with Observations	181
Bibliography	183
Figure 1 – Range of 2 % slow-front overvoltages at the receiving end due to line energization and re-energization [27]	28
and phase-to-earth [28], [29]	29
Figure 3 – Diagram for surge arrester connection to the protected object	36
Figure 4 – Modelling of transmission lines and substations/power stations	42
Figure 5 – Distributive discharge probability of self-restoring insulation described on a linear scale	52
Figure 6 – Disruptive discharge probability of self-restoring insulation described on a Gaussian scale	52
Figure 7 – Evaluation of deterministic co-ordination factor <i>K</i> _{cd}	53
Figure 8 – Evaluation of the risk of failure	54
Figure 9 – Risk of failure of external insulation for slow-front overvoltages as a function of the statistical co-ordination factor K_{CS}	າ 56
Figure 10 – Dependence of exponent <i>m</i> on the co-ordination switching impulse withstand voltage	59
Figure 11 – Probability P of an equipment to pass the test dependent on the difference K between the actual and the rated impulse withstand voltage	65
Figure 12 – Example of a schematic substation layout used for the overvoltage stress location	72
Figure A.1 – Earth fault factor k on a base of X_0/X_1 for $R_1/X_1 = R_f = 0$	77

Figure A.2 – Relationship between R_0/X_1 and X_0/X_1 for constant values of earth fault factor k where $R_1 = 0$	78
Figure A.3 – Relationship between R_0/X_1 and X_0/X_1 for constant values of earth fault factor k where $R_1 = 0.5 X_1$	78
Figure A.4 – Relationship between R_0/X_1 and X_0/X_1 for constant values of earth fault factor k where $R_1 = X_1$	79
Figure A.5 – Relationship between R_0/X_1 and X_0/X_1 for constant values of earth fault factor k where $R_1 = 2X_1$	79
Figure B.1 – Conversion chart for the reduction of the withstand voltage due to placing insulation configurations in parallel	85
Figure C.1 – Probability density and cumulative distribution for derivation of the representative overvoltage phase-to-earth	87
Figure C.2 – Example for bivariate phase-to-phase overvoltage curves with constant probability density and tangents giving the relevant 2 % values	95
Figure C.3 – Principle of the determination of the representative phase-to-phase overvoltage U_{pre}	97
Figure C.4 – Schematic phase-phase-earth insulation configuration	98
Figure C.5 – Description of the 50 % switching impulse flashover voltage of a phase- phase-earth insulation	98
Figure C.6 – Inclination angle of the phase-to-phase insulation characteristic in range "b" dependent on the ratio of the phase-phase clearance D to the height H_{t} above	
earth	99
Figure D.1 – Distributed capacitances of the windings of a transformer and the equivalent circuit describing the windings	105
Figure D.2 – Values of factor <i>J</i> describing the effect of the winding connections on the inductive surge transference	106
Figure H.1 – Principle of the atmospheric correction during test of a specified insulation level according to the procedure of IEC 60060-1	150
Figure H.2 – Principal task of the atmospheric correction in insulation co-ordination according to IEC 60071-1	151
Figure H.3 – Comparison of atmospheric correction $\delta \times k_h$ with relative air pressure p/p_0 for various weather stations around the world	154
Figure H.4 – Deviation of simplified pressure calculation by exponential function in this document from the temperature dependent pressure calculation of ISO 2533	155
Figure H.5 – Principle of altitude correction: decreasing withstand voltage U_{10} of equipment with increasing altitude	156
Figure H.6 – Sets of <i>m</i> -curves for standard switching impulse voltage including the variations in altitude for each gap factor	161
Figure H.7 – Exponent <i>m</i> for standard switching impulse voltage for selected gap factors covering altitudes up to 4 000 m	161
Figure H.8 – Sets of <i>m</i> -curves for critical switching impulse voltage including the variations in altitude for each gap factor	162
Figure H.9 – Exponent <i>m</i> for critical switching impulse voltage for selected gap factors covering altitudes up to 4 000 m	162
Figure H.10 – Accordance of <i>m</i> -curves from Figure 10 with determination of exponent m by means of critical switching impulse voltage for selected gap factors and altitudes	163
Figure I.1 – Examples of lightning overvoltage shapes	166

Figure I.2 – Example of insulation characteristics with respect to lightning overvoltages	407
of the SF6 gas gap (Shape E)	107
Figure I.3 – Calculation of duration time T_d	167
Figure I.4 – Shape evaluation flow for GIS and transformer	168
Figure I.5 – Application to GIS lightning overvoltage	169
Figure I.6 – Example of insulation characteristics with respect to lightning overvoltage of the turn-to-turn insulation (Shape C)	169
Figure I.7 – Application to transformer lightning overvoltage	170
Figure J.1 – Insulation co-ordination for very-fast-front overvoltages	173
Figure L.1 – Outline of the CIGRE method for lightning performance of an overhead line	178
Figure L.2 – Flowchart to calculate lightning outage rate of transmission lines	180
Figure L.3 – Typical conductor arrangements of large-scale transmission lines	181
Figure L.4 – Lightning stroke rate to power lines -calculations and observations	181
Figure L.5 – Lightning outage rate -calculations and observations	182
Table 1 – Test conversion factors for range I, to convert required SIWV to SDWV and LIWV	62
Table 2 – Test conversion factors for range II to convert required SDWV to SIWV	63
Table 3 – Selectivity of test procedures B and C of IEC 60060-1	64
Table B.1 – Breakdown voltage versus cumulative flashover probability – Single insulation and 100 parallel insulations	83
Table E.1 – Corona damping constant K _{CO}	108
Table E.2 – Factor A for various overhead lines	114
Table F.1 – Typical gap factors <i>K</i> for switching impulse breakdown phase-to-earth (according to [1] and [4])	120
Table F.2 – Gap factors for typical phase-to-phase geometries	121
Table G.1 – Summary of minimum required withstand voltages obtained for the example shown in G.2.2.	129
Table G.2 – Summary of required withstand voltages obtained for the example shown in G.2.3.	131
Table G.3 – Values related to the insulation co-ordination procedure for the example in G.4	148
Table H.1 – Comparison of functional expressions of Figure 10 with the selected parameters from the derivation of <i>m</i> -curves with critical switching impulse	163
Table I.1 – Evaluation of the lightning overvoltage in the GIS of UHV system	167
Table I.2 – Evaluation of lightning overvoltage in the transformer of 500 kV system	170

INTERNATIONAL ELECTROTECHNICAL COMMISSION

INSULATION CO-ORDINATION -

Part 2: Application guidelines

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

This redline version of the official IEC Standard allows the user to identify the changes made to the previous edition IEC 60071-2:2018. A vertical bar appears in the margin wherever a change has been made. Additions are in green text, deletions are in strikethrough red text.

IEC 60071-2 has been prepared by IEC technical committee 99: Insulation co-ordination and system engineering of high voltage electrical power installations above 1,0 kV AC and 1,5 kV DC. It is an International Standard.

This fifth edition cancels and replaces the fourth edition published in 2018. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) Clause 4 Concepts governing the insulation co-ordination has been added.
- b) Subclause 5.3 has been revised, and Subclause 5.4 Detailed simulation has been added because it is widely applied in the recent practices of insulation coordination.
- c) Special considerations for cable line and GIL/GIB have been added in Clause 9.
- d) Annex K (informative) Application of line shunt reactor to limitation of TOV and SFO in high voltage overhead transmission lines has been added.
- e) Annex L (informative) Calculation of lightning stroke rate and lightning outage rate has been added.

The text of this International Standard is based on the following documents:

Draft	Report on voting
99/356/CDV	99/392/RVC

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 60071 series, published under the general title *Insulation co-ordination*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INSULATION CO-ORDINATION -

Part 2: Application guidelines

1 Scope

This part of IEC 60071 constitutes application guidelines and deals with the selection of insulation levels of equipment or installations for three-phase-electrical AC systems. Its aim is to give guidance for the determination of the rated withstand voltages for ranges I and II of IEC 60071-1 and to justify the association of these rated values with the standardized highest voltages for equipment.

This association is for insulation co-ordination purposes only. The requirements for human safety are not covered by this document.

This document covers three-phase AC systems with nominal voltages above 1 kV. The values derived or proposed herein are generally applicable only to such systems. However, the concepts presented are also valid for two-phase or single-phase systems.

This document covers phase-to-earth, phase-to-phase and longitudinal insulation.

This document is not intended to deal with routine tests. These are to be specified by the relevant product committees.

The content of this document strictly follows the flow chart of the insulation co-ordination process presented in Figure 1 of IEC 60071-1:20062019. Clauses 5 to 8 correspond to the squares in this flow chart and give detailed information on the concepts governing the insulation co-ordination process which leads to the establishment of the required withstand levels.

This document emphasizes the necessity of considering to consider, at the very beginning, all origins, all classes and all types of voltage stresses in service irrespective of the range of highest voltage for equipment. Only at the end of the process, when the selection of the standard withstand voltages takes place, does the principle of covering a particular service voltage stress by a standard withstand voltage apply. Also, at this final step, this document refers to the correlation made in IEC 60071-1 between the standard insulation levels and the highest voltage for equipment.

The annexes contain examples and detailed information which explain or support the concepts described in the main text, and the basic analytical techniques used.

It has the status of a horizontal standard in accordance with IEC Guide 108.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60060-1:2010, High-voltage test techniques – Part 1: General definitions and test requirements

I

IEC 60071-1:20062019, Insulation co-ordination – Part 1: Definitions, principles and rules IEC 60071-1:2006/AMD1:2010

IEC 60505:2011, Evaluation and qualification of electrical insulation systems

IEC TS 60815-1:2008, Selection and dimensioning of high-voltage insulators intended for use in polluted conditions – Part 1: Definitions, information and general principles

ISO 2533:1975, Standard Atmosphere

IEC TR 60071-4:2004, Insulation co-ordination – Part 4: Computational guide to insulation co-ordination and modelling of electrical networks

SVENSK STANDARD SS-EN IEC 60071-2, utg 3:2024

Fastställd 2024-03-20 ^{Sida} 1 (187) Ansvarig kommitté SEK TK 99

© Copyright SEK Svensk Elstandard. Reproduction in any form without permission is prohibited.

Isolationskoordination – Del 2: Tillämpningsanvisningar

Insulation co-ordination – Part 2: Application guidelines

Som svensk standard gäller europastandarden EN IEC 60071-2:2023. Den svenska standarden innehåller den officiella engelska språkversionen av EN IEC 60071-2:2023.

Nationellt förord

Europastandarden EN IEC 60071-2:2023

består av:

- europastandardens ikraftsättningsdokument, utarbetat inom CENELEC
- IEC 60071-2, Fifth edition, 2023 Insulation co-ordination Part 2: Application guidelines

utarbetad inom International Electrotechnical Commission, IEC.

Tidigare fastställd svensk standard SS-EN IEC 60071-2, utg 2:2018 med eventuella tillägg, ändringar och rättelser, gäller ej fr o m 2026-06-28.

ICS 29.080.30

Denna standard är fastställd av SEK Svensk Elstandard, som också kan lämna upplysningar om **sakinnehållet** i standarden. Postadress: Box 1284, 164 29 KISTA Telefon: 08 - 444 14 00. E-post: sek@elstandard.se. Internet: www.elstandard.se

Standarder underlättar utvecklingen och höjer elsäkerheten

Det finns många fördelar med att ha gemensamma tekniska regler för bl a mätning, säkerhet och provning och för utförande, skötsel och dokumentation av elprodukter och elanläggningar.

Genom att utforma sådana standarder blir säkerhetsfordringar tydliga och utvecklingskostnaderna rimliga samtidigt som marknadens acceptans för produkten eller tjänsten ökar.

Många standarder inom elområdet beskriver tekniska lösningar och metoder som åstadkommer den elsäkerhet som föreskrivs av svenska myndigheter och av EU.

SEK är Sveriges röst i standardiseringsarbetet inom elområdet

SEK Svensk Elstandard svarar för standardiseringen inom elområdet i Sverige och samordnar svensk medverkan i internationell och europeisk standardisering. SEK är en ideell organisation med frivilligt deltagande från svenska myndigheter, företag och organisationer som vill medverka till och påverka utformningen av tekniska regler inom elektrotekniken.

SEK samordnar svenska intressenters medverkan i SEKs tekniska kommittéer och stödjer svenska experters medverkan i internationella och europeiska projekt.

Stora delar av arbetet sker internationellt

Utformningen av standarder sker i allt väsentligt i internationellt och europeiskt samarbete. SEK är svensk nationalkommitté av International Electrotechnical Commission (IEC) och Comité Européen de Normalisation Electrotechnique (CENELEC).

Standardiseringsarbetet inom SEK är organiserat i referensgrupper bestående av ett antal tekniska kommittéer som speglar hur arbetet inom IEC och CENELEC är organiserat.

Arbetet i de tekniska kommittéerna är öppet för alla svenska organisationer, företag, institutioner, myndigheter och statliga verk. Den årliga avgiften för deltagandet och intäkter från försäljning finansierar SEKs standardiseringsverksamhet och medlemsavgift till IEC och CENELEC.

Var med och påverka!

Den som deltar i SEKs tekniska kommittéarbete har möjlighet att påverka framtida standarder och får tidig tillgång till information och dokumentation om utvecklingen inom sitt teknikområde. Arbetet och kontakterna med kollegor, kunder och konkurrenter kan gynnsamt påverka enskilda företags affärsutveckling och bidrar till deltagarnas egen kompetensutveckling.

Du som vill dra nytta av dessa möjligheter är välkommen att kontakta SEKs kansli för mer information.

SEK Svensk Elstandard

Box 1284 164 29 Kista Tel 08-444 14 00 www.elstandard.se

EUROPEAN STANDARD NORME EUROPÉENNE FUROPÄISCHE NORM

EN IEC 60071-2

June 2023

ICS 29.080.30

Supersedes EN IEC 60071-2:2018

English Version

Insulation co-ordination - Part 2: Application guidelines (IEC 60071-2:2023)

Coordination de l'isolement - Partie 2: Lignes directrices en matière d'application (IEC 60071-2:2023) Isolationskoordination - Teil 2: Anwendungsrichtlinie (IEC 60071-2:2023)

This European Standard was approved by CENELEC on 2023-06-28. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2023 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

Ref. No. EN IEC 60071-2:2023 E

European foreword

The text of document 99/356/CDV, future edition 5 of IEC 60071-2, prepared by IEC/TC 99 "Insulation co-ordination and system engineering of high voltage electrical power installations above 1,0 kV AC and 1,5 kV DC" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 60071-2:2023.

The following dates are fixed:

- latest date by which the document has to be implemented at national (dop) 2024-03-28 level by publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting with the (dow) 2026-06-28 document have to be withdrawn

This document supersedes EN IEC 60071-2:2018 and all of its amendments and corrigenda (if any).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Any feedback and questions on this document should be directed to the users' national committee. A complete listing of these bodies can be found on the CENELEC website.

Endorsement notice

The text of the International Standard IEC 60071-2:2023 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standard indicated:

IEC 60099-4:2014	NOTE	Approved as EN 60099-4:2014 (not modified)
IEC 60099-5	NOTE	Approved as EN IEC 60099-5
IEC 60099-8	NOTE	Approved as EN IEC 60099-8
IEC 60507	NOTE	Approved as EN 60507
IEC 62271-1:2017	NOTE	Approved as EN 62271-1:2017 (not modified)
IEC 62271-100:2008	NOTE	Approved as EN 62271-100:2009 (not modified)
IEC 60721-2-3:2013	NOTE	Approved as EN 60721-2-3:2014 (not modified)

Annex ZA (normative)

(normative)

Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: <u>www.cencenelec.eu</u>.

Publication	Year	Title	<u>EN/HD</u>	<u>Year</u>
IEC 60060-1	2010	High-voltage test techniques - Part 1: General definitions and test requirements	EN 60060-1	2010
IEC 60071-1	2019	Insulation co-ordination - Part 1: Definitions, principles and rules	EN IEC 60071-1	2019
IEC 60505	2011	Evaluation and qualification of electrical insulation systems	EN 60505	2011
IEC/TS 60815-1	2008	Selection and dimensioning of high-voltage insulators intended for use in polluted conditions - Part 1: Definitions, information and general principles	-	-
IEC/TR 60071-4	2004	Insulation co-ordination - Part 4: Computational guide to insulation co- ordination and modelling of electrical networks	-	-

Edition 5.0 2023-05

INTERNATIONAL STANDARD

NORME INTERNATIONALE

HORIZONTAL PUBLICATION PUBLICATION HORIZONTALE

Insulation co-ordination – Part 2: Application guidelines

Coordination de l'isolement – Partie 2: Lignes directrices en matière d'application

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 29.080.30

ISBN 978-2-8322-6988-6

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

SEK Svensk Elstandard

CONTENTS

FC	REWO	RD	9	
1	Scop	e	11	
2	Norm	native references	11	
3	3 Terms, definitions, abbreviated terms and symbols			
	3.1	Terms and definitions	12	
	3.2	Abbreviated terms	12	
	3.3	Symbols	13	
4	Cond	epts governing the insulation co-ordination	18	
5	Repr	esentative voltage stresses in service	19	
	5.1	Origin and classification of voltage stresses	19	
	5.2	Characteristics of overvoltage protection devices	19	
	5.2.1	General remarks	19	
	5.2.2	Metal-oxide surge arresters without gaps (MOSA)	20	
	5.2.3	Line surge arresters (LSA) for overhead transmission and distribution lines	22	
	5.3	General approach for the determination of representative voltages and overvoltages	22	
	5.3.1	Continuous (power-frequency) voltage	22	
	5.3.2	Temporary overvoltages	22	
	5.3.3	Slow-front overvoltages	26	
	5.3.4	Fast-front overvoltages	32	
	5.3.5	Very-fast-front overvoltages	36	
	5.4	Determination of representative overvoltages by detailed simulations	37	
	5.4.1	General overview	37	
	5.4.2	Temporary overvoltages	37	
	5.4.3	Slow-front overvoltages	38	
	5.4.4	Fast-front overvoltages	39	
	5.4.5	Very-fast-front overvoltages	43	
6	Co-o	rdination withstand voltage	44	
	6.1	Insulation strength characteristics	44	
	6.1.1	General	44	
	6.1.2	Influence of polarity and overvoltage shapes	45	
	6.1.3	Phase-to-phase and longitudinal insulation	46	
	6.1.4	Influence of weather conditions on external insulation	47	
	6.1.5	Probability of disruptive discharge of insulation	47	
	6.2	Performance criterion	49	
	6.3	Insulation co-ordination procedures	49	
	6.3.1	General	49	
	6.3.2	Insulation co-ordination procedures for continuous (power-frequency) voltage and temporary overvoltage	50	
	6.3.3	Insulation co-ordination procedures for slow-front overvoltages	51	
	6.3.4	Insulation co-ordination procedures for fast-front overvoltages	55	
	6.3.5	Insulation co-ordination procedures for very-fast-front overvoltages	56	
7	Requ	ired withstand voltage	56	
	7.1	General remarks	56	
	7.2	Atmospheric correction	56	
	7.2.1	General remarks	56	

	7.2.2	Altitude correction	57
	7.3	Safety factors	58
	7.3.1	General	58
	7.3.2	Ageing	59
	7.3.3	Production and assembly dispersion	59
	7.3.4	Inaccuracy of the withstand voltage	59
	7.3.5	Recommended safety factors (K _S)	59
8	Stand	lard withstand voltage and testing procedures	60
	8 1	General remarks	60
	811	Overview	60
	812	Standard switching impulse withstand voltage	60
	813	Standard lightning impulse withstand voltage	60
	8.2	Test conversion factors	61
	821	Range I	61
	822	Range II	61
	83	Determination of insulation withstand by type tests	01 62
	0.0	Test procedure dependency upon insulation type	02 62
	0.0.1	Non solf restoring insulation	02 62
	0.3.2		02 60
	0.3.3		02
	0.3.4	Mixed Insulation	03
	0.3.0	Colorities of the type test procedures	04
	0.3.0	Selection of the type test procedures	64
~	8.3.7	Selection of the type test voltages	64
9	Spec	al considerations for apparatus and transmission line	
	9.1	Overhead line	65
	9.1.1	General	65
	9.1.2	Insulation co-ordination for operating voltages and temporary overvoltages	66
	9.1.3	Insulation co-ordination for slow-front overvoltages	66
	9.1.4	Insulation co-ordination for fast-front overvoltages	67
	9.2	Cable line	68
	9.2.1	General	68
	9.2.2	Insulation co-ordination for operating voltages and temporary overvoltages	68
	923	Insulation co-ordination for slow-front overvoltages	68
	9.2.4	Insulation co-ordination for fast-front overvoltages	
	925	Overvoltage protection of cable lines	69
	9.3	GII (gas insulated transmission line) / GIB (Gas-insulated busduct)	70
	931	General	70
	932	Insulation co-ordination for operating voltages and temporary	
	0.0.2	overvoltages	70
	9.3.3	Insulation co-ordination for slow-front overvoltages	70
	9.3.4	Insulation co-ordination for fast-front overvoltages	71
	9.3.5	Overvoltage protection of GIL/GIB lines	71
	9.4	Substation	71
	9.4.1	General	71
	9.4.2	Insulation co-ordination for overvoltages	72
Aı	nnex A (informative) Determination of temporary overvoltages due to earth faults	75
Δ١	nex R (informative) Weibull probability distributions	70
1.1			

B.1	General remarks	79
B.2	Disruptive discharge probability of external insulation	80
B.3	Cumulative frequency distribution of overvoltages	83
Annex C to line en	(informative) Determination of the representative slow-front overvoltage due ergization and re-energization	86
C.1	General remarks	86
C.2	Probability distribution of the representative amplitude of the prospective overvoltage phase-to-earth	86
C.3	Probability distribution of the representative amplitude of the prospective overvoltage phase-to-phase	89
C.4	Insulation characteristic	90
C.5	Numerical example	93
Annex D	(informative) Transferred overvoltages in transformers	98
D.1	General remarks	98
D.2	Transferred temporary overvoltages	99
D.3	Capacitively transferred surges	99
D.4	Inductively transferred surges	101
Annex E	(informative) Determination of lightning overvoltages by simplified method	105
E.1	General remarks	
E.2	Determination of the limit distance (X_{n})	
 ⊑ 2 ⁄	2 = p ,	105
∟.∠. ⊑ 2 ′	Self protection of substation	106
E 3	Estimation of the representative lightning overvoltage amplitude	107
E.0 E 3 /	Concercial	107
⊑.0. E 3.0	2 Shielding penetration	107
E.0.2	B Back flashovers	107
F 4	Simplified approach	110
E 5	Assumed maximum value of the representative lightning overvoltage	112
Annex F	(informative) Calculation of air gap breakdown strength from experimental	
data		114
F.1	General	
F.2	Insulation response to power-frequency voltages	
F.3	Insulation response to slow-front overvoltages	
F 4	Insulation response to fast-front overvoltages	116
Annex G	(informative) Examples of insulation co-ordination procedure	
G 1		120
G 2	Numerical example for a system in range I (with nominal voltage of 230 kV)	120
G 2	1 General	120
G 2 ⁴	2 Part 1: no special operating conditions	121
G 2 1	Part 2: influence of canacitor switching at station 2	128
G 2 /	 Part 3: flow charts related to the example of Clause G 2 	130
G 3	Numerical example for a system in range II (with nominal voltage of 735 kV)	135
G 3	1 General	135
G.3.	2 Step 1: determination of the representative overvoltages –	100
0.0.	values of $U_{\rm rp}$	135
G.3.3	3 Step 2: determination of the co-ordination withstand voltages – values of U _{CW}	136
G.3.4	4 Step 3: determination of the required withstand voltages – values of	
	U _{rw}	137

G.3.5	5 Step 4: conversion to switching impulse withstand voltages (SIWV)	138
G.3.6	S Step 5: selection of standard insulation levels	139
G.3.7	Considerations relative to phase-to-phase insulation co-ordination	139
G.3.8	B Phase-to-earth clearances	140
G.3.9	Phase-to-phase clearances	141
G.4	Numerical example for substations in distribution systems with $U_{\rm m}$ up to	
	36 kV in range I	141
G.4.1	General	141
G.4.2	Step 1: determination of the representative overvoltages – values of U _{rp}	142
G.4.3	Step 2: determination of the co-ordination with stand voltages – values of $U_{\rm CW}$	142
G.4.4	Step 3: determination of required withstand voltages – values of U_{rw}	143
G.4.5	5 Step 4: conversion to standard short-duration power-frequency and lightning impulse withstand voltages	144
G.4.6	S Step 5: selection of standard withstand voltages	145
G.4.7	Summary of insulation co-ordination procedure for the example of Clause G.4	
Annex H (informative) Atmospheric correction – Altitude correction application	
example.		147
H.1	General principles	147
H.1.1	Atmospheric correction in standard tests	147
H.1.2	2 Task of atmospheric correction in insulation co-ordination	148
H.2	Atmospheric correction in insulation co-ordination	150
H.2.1	Factors for atmospheric correction	150
H.2.2	2 General characteristics for moderate climates	150
H.2.3	S Special atmospheric conditions	151
H.2.4	Altitude dependency of air pressure	152
H.3	Altitude correction	153
H.3.1	Definition of the altitude correction factor	153
H.3.2	Principle of altitude correction	154
H.3.3	Altitude correction for standard equipment operating at altitudes up to 1 000 m	155
H.3.4	Altitude correction for standard equipment operating at altitudes above 1 000 m	156
H.4	Selection of the exponent <i>m</i>	156
H.4.1	General	156
H.4.2	2 Derivation of exponent m for switching impulse voltage	157
H.4.3	B Derivation of exponent <i>m</i> for critical switching impulse voltage	159
Annex I (i for repres	nformative) Evaluation method of non-standard lightning overvoltage shape entative voltages and overvoltages	162
I.1	General remarks	162
1.2	Lightning overvoltage shape	162
1.3	Evaluation method for GIS	162
1.3.1	Experiments	162
1.3.2	Evaluation of overvoltage shape	163
1.4	Evaluation method for transformer	163
1.4.1	Experiments	163
1.4.2	Evaluation of overvoltage shape	164

Annex J	(informative) Insulation co-ordination for very-fast-front overvoltages in UHV	160
.I 1	General	169
J.2	Influence of disconnector design	169
J.3	Insulation co-ordination for VFFO	170
Annex K voltage d	(informative) Application of shunt reactors to limit TOV and SFO of high overhead transmission line	172
K.1	General remarks	172
K.2	Limitation of TOV and SFO	172
K.3	Application of the neutral grounding reactor to limit resonance overvoltage and secondary arc current	172
K.4	SFO and Beat frequency overvoltage limited by neutral arrester	173
K.5	SFO and FFO due to SR de-energization	174
K.6	Limitation of TOV by Controllable SR	174
K.7	Insulation coordination of the SR and neutral grounding reactor	174
K.8	Self-excitation TOV of synchronous generator	174
Annex L	(informative) Calculation of lightning stroke rate and lightning outage rate	175
L.1	General	175
L.2	Description in CIGRE [37]	175
L.3	Flash program in IEEE [49]	176
L.4	[Case Study] Calculation of Lightning Stroke Rate and Lightning Outage Rate (Appendix D in CIGRE TB 839 [37])	176
L.4.	1 Basic flow of calculation method	176
L.4.	2 Comparison of Calculation Results with Observations	179
Bibliogra	iphy	181
Figure 1 energiza	 Range of 2 % slow-front overvoltages at the receiving end due to line tion and re-energization [27] 	28
Figure 2 and phas	 Ratio between the 2 % values of slow-front overvoltages phase-to-phase se-to-earth [28], [29] 	29
Figure 3	- Diagram for surge arrester connection to the protected object	36
Figure 4	- Modelling of transmission lines and substations/power stations	42
Figure 5 linear sc	 Distributive discharge probability of self-restoring insulation described on a ale 	51
Figure 6 Gaussia	 Disruptive discharge probability of self-restoring insulation described on a n scale 	52
Figure 7	– Evaluation of deterministic co-ordination factor K _{cd}	52
Figure 8	– Evaluation of the risk of failure	53
Figure 9 of the sta	 Risk of failure of external insulation for slow-front overvoltages as a function atistical co-ordination factor K_{CS} 	55
Figure 1 withstan	0 – Dependence of exponent <i>m</i> on the co-ordination switching impulse d voltage	58
Figure 1 K betwee	1 – Probability <i>P</i> of an equipment to pass the test dependent on the difference en the actual and the rated impulse withstand voltage	64
Figure 12 location	2 – Example of a schematic substation layout used for the overvoltage stress	71
Figure A	.1 – Earth fault factor k on a base of X_0/X_1 for $R_1/X_1 = R_f = 0$	76
-		

Figure A.2 – Relationship between R_0/X_1 and X_0/X_1 for constant values of earth fault factor k where $R_1 = 0$	76
Figure A.3 – Relationship between R_0/X_1 and X_0/X_1 for constant values of earth fault factor <i>k</i> where $R_1 = 0.5 X_1$	77
Figure A.4 – Relationship between R_0/X_1 and X_0/X_1 for constant values of earth fault factor k where $R_1 = X_1$	77
Figure A.5 – Relationship between R_0/X_1 and X_0/X_1 for constant values of earth fault factor k where $R_1 = 2X_1$	78
Figure B.1 – Conversion chart for the reduction of the withstand voltage due to placing insulation configurations in parallel	85
Figure C.1 – Probability density and cumulative distribution for derivation of the representative overvoltage phase-to-earth	86
Figure C.2 – Example for bivariate phase-to-phase overvoltage curves with constant probability density and tangents giving the relevant 2 % values	94
Figure C.3 – Principle of the determination of the representative phase-to-phase overvoltage $U_{\rm pre}$	95
Figure C.4 – Schematic phase-phase-earth insulation configuration	96
Figure C.5 – Description of the 50 % switching impulse flashover voltage of a phase- phase-earth insulation	96
Figure C.6 – Inclination angle of the phase-to-phase insulation characteristic in range "b" dependent on the ratio of the phase-phase clearance D to the height H_{t} above	
earth	97
Figure D.1 – Distributed capacitances of the windings of a transformer and the equivalent circuit describing the windings	103
Figure D.2 – Values of factor J describing the effect of the winding connections on the inductive surge transference.	104
Figure H.1 – Principle of the atmospheric correction during test of a specified insulation level according to the procedure of IEC 60060-1	148
Figure H.2 – Principal task of the atmospheric correction in insulation co-ordination according to IEC 60071-1	149
Figure H.3 – Comparison of atmospheric correction $\delta \times k_h$ with relative air pressure p/p_0 for various weather stations around the world	152
Figure H.4 – Deviation of simplified pressure calculation by exponential function in this document from the temperature dependent pressure calculation of ISO 2533	153
Figure H.5 – Principle of altitude correction: decreasing withstand voltage U_{10} of equipment with increasing altitude	155
Figure H.6 – Sets of <i>m</i> -curves for standard switching impulse voltage including the variations in altitude for each gap factor	159
Figure H.7 – Exponent m for standard switching impulse voltage for selected gap factors covering altitudes up to 4 000 m	159
Figure H.8 – Sets of <i>m</i> -curves for critical switching impulse voltage including the variations in altitude for each gap factor	160
Figure H.9 – Exponent m for critical switching impulse voltage for selected gap factors covering altitudes up to 4 000 m	160
Figure H.10 – Accordance of <i>m</i> -curves from Figure 10 with determination of exponent m by means of critical switching impulse voltage for selected gap factors and altitudes	161
Figure I.1 – Examples of lightning overvoltage shapes	164

Figure I.2 – Example of insulation characteristics with respect to lightning overvoltages of the SF_6 gas gap (Shape E)	165
Figure I.3 – Calculation of duration time <i>T</i> _d	165
Figure I.4 – Shape evaluation flow for GIS and transformer	166
Figure I.5 – Application to GIS lightning overvoltage	167
Figure I.6 – Example of insulation characteristics with respect to lightning overvoltage of the turn-to-turn insulation (Shape C)	167
Figure I.7 – Application to transformer lightning overvoltage	168
Figure J.1 – Insulation co-ordination for very-fast-front overvoltages	171
Figure L.1 – Outline of the CIGRE method for lightning performance of an overhead line	176
Figure L.2 – Flowchart to calculate lightning outage rate of transmission lines	178
Figure L.3 – Typical conductor arrangements of large-scale transmission lines	179
Figure L.4 – Lightning stroke rate to power lines -calculations and observations	179
Figure L.5 – Lightning outage rate -calculations and observations	180
Table 1 – Test conversion factors for range I, to convert required SIWV to SDWV and LIWV	61
Table 2 – Test conversion factors for range II to convert required SDWV to SIWV	62
Table 3 – Selectivity of test procedures B and C of IEC 60060-1	63
Table B.1 – Breakdown voltage versus cumulative flashover probability – Singleinsulation and 100 parallel insulations	82
Table E.1 – Corona damping constant K _{CO}	106
Table E.2 – Factor A for various overhead lines	112
Table F.1 – Typical gap factors <i>K</i> for switching impulse breakdown phase-to-earth (according to [1] and [4])	118
Table F.2 – Gap factors for typical phase-to-phase geometries	119
Table G.1 – Summary of minimum required withstand voltages obtained for the example shown in G.2.2.	127
Table G.2 – Summary of required withstand voltages obtained for the example shown in G.2.3.	129
Table G.3 – Values related to the insulation co-ordination procedure for the example in G.4	146
Table H.1 – Comparison of functional expressions of Figure 10 with the selected parameters from the derivation of <i>m</i> -curves with critical switching impulse	161
Table I.1 – Evaluation of the lightning overvoltage in the GIS of UHV system	165
Table I.2 – Evaluation of lightning overvoltage in the transformer of 500 kV system	168

INTERNATIONAL ELECTROTECHNICAL COMMISSION

INSULATION CO-ORDINATION -

Part 2: Application guidelines

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 60071-2 has been prepared by IEC technical committee 99: Insulation co-ordination and system engineering of high voltage electrical power installations above 1,0 kV AC and 1,5 kV DC. It is an International Standard.

This fifth edition cancels and replaces the fourth edition published in 2018. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) Clause 4 Concepts governing the insulation co-ordination has been added.
- b) Subclause 5.3 has been revised, and Subclause 5.4 Detailed simulation has been added because it is widely applied in the recent practices of insulation coordination.
- c) Special considerations for cable line and GIL/GIB have been added in Clause 9.
- d) Annex K (informative) Application of line shunt reactor to limitation of TOV and SFO in high voltage overhead transmission lines has been added.

e) Annex L (informative) Calculation of lightning stroke rate and lightning outage rate has been added.

- 10 -

The text of this International Standard is based on the following documents:

Draft	Report on voting
99/356/CDV	99/392/RVC

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 60071 series, published under the general title *Insulation co-ordination*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INSULATION CO-ORDINATION -

Part 2: Application guidelines

1 Scope

This part of IEC 60071 constitutes application guidelines and deals with the selection of insulation levels of equipment or installations for three-phase AC systems. Its aim is to give guidance for the determination of the rated withstand voltages for ranges I and II of IEC 60071-1 and to justify the association of these rated values with the standardized highest voltages for equipment.

This association is for insulation co-ordination purposes only. The requirements for human safety are not covered by this document.

This document covers three-phase AC systems with nominal voltages above 1 kV. The values derived or proposed herein are generally applicable only to such systems. However, the concepts presented are also valid for two-phase or single-phase systems.

This document covers phase-to-earth, phase-to-phase and longitudinal insulation.

This document is not intended to deal with routine tests. These are to be specified by the relevant product committees.

The content of this document strictly follows the flow chart of the insulation co-ordination process presented in Figure 1 of IEC 60071-1:2019. Clauses 5 to 8 correspond to the squares in this flow chart and give detailed information on the concepts governing the insulation co-ordination process which leads to the establishment of the required withstand levels.

This document emphasizes to consider, at the very beginning, all origins, all classes and all types of voltage stresses in service irrespective of the range of highest voltage for equipment. Only at the end of the process, when the selection of the standard withstand voltages takes place, does the principle of covering a particular service voltage stress by a standard withstand voltage apply. Also, at this final step, this document refers to the correlation made in IEC 60071-1 between the standard insulation levels and the highest voltage for equipment.

The annexes contain examples and detailed information which explain or support the concepts described in the main text, and the basic analytical techniques used.

It has the status of a horizontal standard in accordance with IEC Guide 108.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60060-1:2010, High-voltage test techniques – Part 1: General definitions and test requirements

IEC 60071-1:2019, Insulation co-ordination – Part 1: Definitions, principles and rules

IEC 60505:2011, Evaluation and qualification of electrical insulation systems

IEC TS 60815-1: 2008, Selection and dimensioning of high-voltage insulators intended for use in polluted conditions – Part 1: Definitions, information and general principles

– 12 –

IEC TR 60071-4:2004, Insulation co-ordination – Part 4: Computational guide to insulation co-ordination and modelling of electrical networks