

SVENSK STANDARD SS-EN IEC 62309, utg 2:2025

Fastställd 2025-10-22 Sida 1 (36) Ansvarig kommitté

SEK TK 56

© Copyright SEK Svensk Elstandard. Reproduction in any form without permission is prohibited.

Tillförlitlighet hos produkter som innehåller återanvända komponenter – Fordringar för funktionalitet och provning

Dependability of products containing reused parts – Requirements for functionality and tests

Som svensk standard gäller europastandarden EN IEC 62309:2025. Den svenska standarden innehåller den officiella engelska språkversionen av EN IEC 62309:2025.

Nationellt förord

Europastandarden EN IEC 62309:2025

består av:

- europastandardens ikraftsättningsdokument, utarbetat inom CENELEC
- IEC 62309, Second edition, 2024 Dependability of products containing reused parts -Requirements for functionality and tests

utarbetad inom International Electrotechnical Commission, IEC.

Tidigare fastställd svensk standard SS-EN 62309, utg 1:2008 med eventuella tillägg, ändringar och rättelser gäller ej fr o m 2028-01-31.

ICS 03.120.30: 21.020.00

Standarder underlättar utvecklingen och höjer elsäkerheten

Det finns många fördelar med att ha gemensamma tekniska regler för bl a mätning, säkerhet och provning och för utförande, skötsel och dokumentation av elprodukter och elanläggningar.

Genom att utforma sådana standarder blir säkerhetsfordringar tydliga och utvecklingskostnaderna rimliga samtidigt som marknadens acceptans för produkten eller tjänsten ökar.

Många standarder inom elområdet beskriver tekniska lösningar och metoder som åstadkommer den elsäkerhet som föreskrivs av svenska myndigheter och av EU.

SEK är Sveriges röst i standardiseringsarbetet inom elområdet

SEK Svensk Elstandard svarar för standardiseringen inom elområdet i Sverige och samordnar svensk medverkan i internationell och europeisk standardisering. SEK är en ideell organisation med frivilligt deltagande från svenska myndigheter, företag och organisationer som vill medverka till och påverka utformningen av tekniska regler inom elektrotekniken.

SEK samordnar svenska intressenters medverkan i SEKs tekniska kommittéer och stödjer svenska experters medverkan i internationella och europeiska projekt.

Stora delar av arbetet sker internationellt

Utformningen av standarder sker i allt väsentligt i internationellt och europeiskt samarbete. SEK är svensk nationalkommitté av International Electrotechnical Commission (IEC) och Comité Européen de Normalisation Electrotechnique (CENELEC).

Standardiseringsarbetet inom SEK är organiserat i referensgrupper bestående av ett antal tekniska kommittéer som speglar hur arbetet inom IEC och CENELEC är organiserat.

Arbetet i de tekniska kommittéerna är öppet för alla svenska organisationer, företag, institutioner, myndigheter och statliga verk. Den årliga avgiften för deltagandet och intäkter från försäljning finansierar SEKs standardiseringsverksamhet och medlemsavgift till IEC och CENELEC.

Var med och påverka!

Den som deltar i SEKs tekniska kommittéarbete har möjlighet att påverka framtida standarder och får tidig tillgång till information och dokumentation om utvecklingen inom sitt teknikområde. Arbetet och kontakterna med kollegor, kunder och konkurrenter kan gynnsamt påverka enskilda företags affärsutveckling och bidrar till deltagarnas egen kompetensutveckling.

Du som vill dra nytta av dessa möjligheter är välkommen att kontakta SEKs kansli för mer information.

SEK Svensk Elstandard

Box 1042 172 21 Sundbyberg Tel 08-444 14 00 elstandard.se

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN IEC 62309

January 2025

ICS 03.120.30; 21.020

Supersedes EN 62309:2004

English Version

Dependability of new products containing reused parts and lifeextended products (IEC 62309:2024)

Sûreté de fonctionnement des produits neufs contenant des composants réutilisés et des produits à durée de vie prolongée (IEC 62309:2024)

Zuverlässigkeit von Produkten mit wieder verwendeten Teilen und Produkten mit verlängerter Gebrauchsdauer (IEC 62309:2024)

This European Standard was approved by CENELEC on 2025-01-08. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2025 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

Ref. No. EN IEC 62309:2025 E

SS-EN IEC 62309, utg 2:2025

European foreword

The text of document 56/2057/FDIS, future edition 2 of IEC 62309, prepared by TC 56 "Dependability" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 62309:2025.

The following dates are fixed:

- latest date by which the document has to be implemented at national (dop) 2026-01-31
 level by publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting with the (dow) 2028-01-31 document have to be withdrawn

This document supersedes EN 62309:2004 and all of its amendments and corrigenda (if any).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Any feedback and questions on this document should be directed to the users' national committee. A complete listing of these bodies can be found on the CENELEC website.

Endorsement notice

The text of the International Standard IEC 62309:2024 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standard indicated:

NOTE Approved as EN IEC 62402:2010 (not modified)

IEC 62402:2019	NOTE	Approved as EN IEC 62402:2019 (not modified)
ISO 9000:2015	NOTE	Approved as EN ISO 9000:2015 (not modified)
IEC 60300-1	NOTE	Approved as EN IEC 60300-1
IEC 60300-3-1:2003	NOTE	Approved as EN 60300-3-1:2004 (not modified)
ISO 9001:2015	NOTE	Approved as EN ISO 9001:2015 (not modified)
IEC 60300-3-14:2004	NOTE	Approved as EN 60300-3-14:2004 (not modified)
IEC 63000:2016	NOTE	Approved as EN IEC 63000:2018 (not modified)
IEC 61709:2017	NOTE	Approved as EN 61709:2017 (not modified)
IEC 60706-5:2007	NOTE	Approved as EN 60706-5:2007 (not modified)
IEC 61649:2008	NOTE	Approved as EN 61649:2008 (not modified)

IEC 62402-2040

Edition 2.0 2024-12

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Dependability of new products containing reused parts and life-extended products

Sûreté de fonctionnement des produits neufs contenant des composants réutilisés et des produits à durée de vie prolongée

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 03.120.30, 21.020 ISBN 978-2-8327-0074-7

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

SEK Svensk Elstandard SS-EN IEC 62309, utg 2:2025

CONTENTS

F(DREWO	RD	4
IN	ITRODU	ICTION	6
1	Scop	e	8
2	Norm	native references	8
3	Term	s, definitions and abbreviated terms	8
	3.1	Terms and definitions	
	3.2	Abbreviated terms	
4	Requ	irements for products containing reused parts	
	4.1	Process and decision flows	
	4.2	Functional properties and quality	
	4.3	Environmental issues	
	4.4	Safety	14
	4.5	Remaining working life	14
	4.6	Traceability	14
5	Reco	nditioning	15
	5.1	Reconditioning of parts	15
	5.2	Dismantling and restoration	15
6	Qual	ification testing for products containing reused parts	15
	6.1	Evaluation of current status	15
	6.2	Reliability assessment	15
	6.3	Final inspection and testing	16
7	Warr	anty and documentation	16
	7.1	Useful life, failure rate, warranty period	16
	7.2	Documentation	16
	7.2.1	Customer documentation	16
	7.2.2	Internal documentation	16
	7.3	Product compliance and control	
Αı	nnex A (normative) Additional declarations for life extension	18
	A.1	Assurance, system of assurance, and testing	18
	A.2	Final product declared as "new product containing reused parts"	19
	A.3	Final product declared as "refurbished"	20
	A.4	Products declared as "life extended"	20
	A.5	Final product declared as "updated"	
	A.6	Final product declared as "upgraded"	
	A.7	Final product declared as "second-hand"	
Αı	nnex B (informative) Dependability aspects	
	B.1	Maintenance and repair of products	
	B.2	Reliability of reused parts	
	B.2.1		
	B.2.2	9 9	
	B.3	Design documentation	
	B.4	Design for reuse	
	B.4.1		
	B.4.2	3 3	
	B.4.3	3	
	B.4.4	Recycling and disposal decisions (end-of-life, EOL)	28

B.5	Economic aspects	28
B.6	Lifetime diagram	29
Annex C (informative) Example with QAGAN parts	30
C.1	Modules considered for reuse	30
C.2	The optical system	30
C.3	The electric motor	30
C.4	The voltage supply	31
C.4.1	General	31
C.4.2	Solder joints	31
C.4.3	Power transistors	31
C.4.4	Non-solid electrolyte capacitors	31
C.4.5	Varistors	31
C.4.6	The memory PWA	31
C.4.7	EPROMs	32
C.4.8	Connectors	32
C.5	Conclusion	32
Bibliograp	bhy	33
Figure 1 -	- Life extension for products, parts, and material	13
Figure 2 -	- Principal decision flow considering parts	13
Figure B.1	1 – Example for determination of the remaining working life of parts	25
Figure B.2	2 – Lifetime diagram	29
Table A.1	Different aspects of product life	18
Table B.1	- Assignment of "level of detail for product" to "design aspects"	27

INTERNATIONAL ELECTROTECHNICAL COMMISSION

DEPENDABILITY OF NEW PRODUCTS CONTAINING REUSED PARTS AND LIFE-EXTENDED PRODUCTS

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 62309 has been prepared by IEC technical committee 56: Dependability. It is an International Standard.

This second edition cancels and replaces the first edition published in 2004. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) the previous Annex A has been separated into Annex B (Dependability aspects) and Annex C (Example with QAGAN parts);
- b) a new normative Annex A has been written with expansion of lifecycle activities, to describe extending the useful life by refurbishment, life extension, updating, upgrading and second-hand use:
- c) revision of Figure 1 accordingly;

- d) minor editorial alignments throughout the document;
- e) the abbreviation "quagan" has been changed "QAGAN" to reflect more contemporary use.

The text of this International Standard is based on the following documents:

Draft	Report on voting
56/2057/FDIS	56/2073/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

INTRODUCTION

The marketplace for products in the 21st century is a rapidly changing one, with increased speed of technological growth, and new pressures on environmental sustainability as humanity's demand for ecological resources currently far exceeds what the Earth can regenerate in the same timeframe.

Owing to the improving quality of manufacturing, most parts have been manufactured with a life expectancy far longer than the user needs.

Technological changes are also making products more reliable. However, commercial pressures and legislation changes are leading to an increased rate of technological change, resulting in a difficulty in obtaining supplies, spares and or support for the superseded parts [a discipline known as obsolescence management (see IEC 62402 [1]¹)], and the need to upgrade systems before all their parts have reached their life expectancy.

The disposal of products and their component parts, which can be potentially useful, is fuelling the cycle of waste and the overuse of finite materials.

It is unlikely that the speed of technological growth can be slowed, or significant changes can be made to user needs. However, what can be done is to increase the reuse of parts that have not reached their life expectancy. This document addresses this goal to reduce waste by reusing parts, and the additional benefits that come with reusing parts.

This document provides customers with dependability assurance when manufacturers are producing new products containing previously used parts. The main concept is to qualify the reused parts to ensure that the product under consideration will fulfil the requirements for a product containing only new parts. The reused parts can then be declared QAGAN (qualified-as-good-as-new) and used interchangeably with new parts in the product.

This document firstly describes, in Clauses 4 to 7, requirements for qualification of reuse of parts in new products. A QAGAN part is qualified only for a specific application, often the same or similar to that for which it was previously used. This means that QAGAN parts are not declared as qualified for general use.

QAGAN parts are already type approved for their original application. The declaration QAGAN certifies that a reused part that has previously been qualified for use in a specific product has been checked that it has not deteriorated to a degree that it cannot be used in new products. A new product containing QAGAN parts is tested only to the same extent as if it contained only new parts.

Secondly, in Clauses A.3 to A.7, this document describes the life extension of products already in use. In most cases, life extension can be made using new components, new parts, or QAGAN parts that have been qualified for the specific application.

SEK Svensk Elstandard

Numbers in square brackets refer to the Bibliography.

Reuse of parts and materials is one way to save resources. Another way is to extend the useful life of products as described in Annex A, extending the useful life by refurbishment, life extension, updating, upgrading or second-hand use. These concepts are defined and the requirements for using the term QAGAN with reference to this document are stated. This document expresses guidance to support the circular economy and anticipates application by organisations to enable, permit and encourage reuse of functional parts. This document envisages that the item, the subject under consideration, which attracts the declaration or designation "QAGAN" may be an individual part, component, device, or functional unit. This document does not cover reused materials or large structures and large systems, nor does it cover software products, concepts, and ideas.

DEPENDABILITY OF NEW PRODUCTS CONTAINING REUSED PARTS AND LIFE-EXTENDED PRODUCTS

1 Scope

This International Standard introduces the concept to check the reliability and functionality of reused parts and their usage within new products. It also provides information and criteria about the assurance [for example, testing and analysis, required for products containing reused parts, which are declared "qualified-as-good-as-new" (QAGAN)] relative to the designed life of the product.

This document specifies requirements to be satisfied before making a declaration or applying a designation of QAGAN. This document also gives guidance to support any organisation that makes declarations about dependability of products containing reused parts.

In this document, the term "product" covers electrical, electro-mechanical, mechanical parts or hardware that can contain software.

"Qualified-as-good-as-new" (QAGAN) does not apply to reused materials or large structures and large systems, nor does it cover software products, concepts, and ideas.

The purpose of this document is to ensure by tests and analysis that the reliability and functionality of a new product containing reused parts is comparable to a product that contains only new parts. This would justify the manufacturer granting the next customer the full warranty of the product with "qualified-as-good-as-new" (QAGAN) parts.

NOTE This document can also be applied in producing product-specific standards by technical committees responsible for an application sector.

Annex A describes extending useful life by refurbishment, updating, upgrading, maintenance and used as second-hand. These concepts are defined and the requirements for using the term with reference to this document are stated.

2 Normative references

There are no normative references in this document.