IEC IEC 61158-4-3

Edition 1.0 2007-12

INTERNATIONAL
STANDARD

Industrial communication networks — Fieldbus specifications —
Part 4-3: Data-link layer protocol specification — Type 3 elements

INTERNATIONAL
ELECTROTECHNICAL

COMMISSION PRICE CODE X H

ICS 35.100.20; 25.040.40

ISBN 2-8318-9429-8

-2- 61158-4-3 © IEC:2007(E)

CONTENTS
O L L @ 1 I PP 6
LN 75 1 L@ N 1] 8
S o o o 1= Y 9
It O =Y oY - | PP 9
1.2 SPECIHICAIIONS . it 9
1 8 PrOCEAUIES ... e e e e 9
LI S N o oYL= o 11 1 Y 9
1.5 CON OIMANCE ... e e 10
NOIMALtIVE FEIEIENCES ...t e 10
Terms, definitions, symbols and abbreviations..............o 10
3.1 Reference model terms and definitions ... 10
3.2 Service convention terms and definitions...........cooiii i 12
3.3 Common terms and definitionsooiiii i 13
3.4 Additional Type 3 definitions........coiiiiiii 15
3.5 Common symbols and abbreviationsccocoiiiii 17
3.6 Type 3 symbols and abbreviations............coooiiii 18
4 Common DL-protoCol €1€MENESciuii i 22
4.1 Frame CheCK SEQUENCEo e 22
5 Overview of the DL-protoCOl ... 24
D GBNEIAl e 24
5.2 Overview of the medium access control and transmission protocol........................ 25
5.3 Transmission modes and DL-entity..........coiiiiiiiiiiii 26
5.4 Service assumed from the PhL ..o 31
5.5 Operational elements ... e 34
5.6 Cycle and system reaction timescooiiii i 50
6 General structure and encoding of DLPDUs, and related elements of procedure 53
6.1 DLPDU granuUlarity ...c.ooioeiii e e 53
6.2 Length octet (LE, LEr) oo e 54
6.3 AdAress OCTET ...t e 55
6.4 CoNntrol 0Ctet (FC). i e 57
6.5 DLPDU content error detecCtiono 61
LG ST N 1N © 1\ I P 62
6.7 Error CONtrol ProCeAUIES ... e e 62
7 DLPDU-specific structure, encoding and elements of procedure.............cocceeeiiiiiiiinnnn... 64
7.1 DLPDUs of fixed length with no data field.............cc.ooi 64
7.2 DLPDUs of fixed length with data field..................ooiii 65
7.3 DLPDUs with variable data field length ... 67
A S o =T T] I 5 O P 68
7.5 ASP DLP DU ..t e 69
A ST S 4\ T T I I L 69
7.7 Time Event (TE) DLPDU. ... 69
7.8 Clock Value (CV) DLPDU ...t e s 69
7.9 TransmiSSION PrOCEAUIESiuiiii it e e e et et e e eneens 70
8 Other DLE elements of procedure. 73
8.1 DL-entity initialization ..o 73

8.2 States of the media access control of the DL-entity ..o 73

61158-4-3 © IEC:2007(E) -3-

8.3 Clock synchronization protoCol.........c.oiiuiiiiii 79
Annex A (normative) — DL-Protocol state machinescooiiiiiiiiii e, 84
AT OVerall StrUCTUNE .. . 84
A.2 Variation of state machines in different devices.............ccooiiiiiiiiii, 85
A.3 DL Dat@ RESOUICE ...t e e e e 86
N I I | 1 91
< T | PPt 115
A8 SRU L 143
Annex B (informative) — Type 3 (synchronous): exemplary FCS implementations.............. 161
Annex C (informative) — Type 3: Exemplary token procedure and message transfer
0= o To £ 163
C.1 Procedure of tOKeN PasSINGccuiiniiitii i 163
C.2 Examples for token passing proCedurecooevviiiiiiiie e 164
C.3 Examples for message transfer periods — asynchronous transmission................. 169
C.4 Examples for message transfer periods — synchronous transmission................... 170
L= 1 o 1Yo = ¥ o 2 172 171
Figure 1 — Relationships of DLSAPs, DLSAP-addresses and group DL-addresses................ 14
Figure 2 — Logical toKeN-pasSing FiNG ... e e 27
Figure 3 — PhL data service for asynchronous transmission..............ccocceviiiiiiiiiin e, 31
o TUY =Y A Fo 1 U= 1 ¢ = N i N 37
Figure 5 — Idle time TID2 (SDN, CO) .. e e 37
Figure 6 — Idle time TID2 (MSRD) ..iniii e e 38
o 10 YA Y (o) o {10 U= X < e T PN 38
o 10 oIS A Y (o) o 10 U= X S 2 N 39
o [0 =Y A Y (o) o {10 U= X < e T PN 44
Figure 10 — Slot timMe T QLD «ouiniiiii it et e e e aeenas 44
Figure 11 — Token transfer Periodo e 50
Figure 12 — Message transfer Period..... ..o e 51
Figure 13 — UART CharaCter ... et e e e e eaeanas 53
Figure 14 — OCtet StrUCTUIE ... e 54
Figure 15 — Length octet COAINGccuuiiiiiiiii e 54
Figure 16 — Address OCtet COAINGouiiiiiii e 55
Figure 17 — DAE/SAE octet in the DLPDU ..o 56
Figure 18 — Address extension OCtel...... ..o 56
Figure 19 — FC octet coding for send/request DLPDUSccoiiiiiiiiiiii e, 57
Figure 20 — FC octet coding for acknowledgement or response DLPDUSccocveviinnis 58
Figure 21 — FCS 0Ctet COAING...uiuuiiiiiii et e e aaaanas 61
Figure 22 — Data field ..o 62
Figure 23 — ldent USer data ..o 62
Figure 24 — DLPDUs of fixed length with no data field.................cooiiii i, 64
Figure 25 — DLPDUs of fixed length with no data field.................cooiiii i, 65
Figure 26 — DLPDUs of fixed length with data field ... 66

Figure 27 — DLPDUs of fixed length with data field ... 66

—4 - 61158-4-3 © IEC:2007(E)

Figure 28 — DLPDUs with variable data field length............ccooii 67
Figure 29 — DLPDUs with variable data field length...............ooiii i, 68
Figure 30 — TOKEN DLP DU ... et e e e e enaaes 68
Figure 31 — ToKen DLPDU ...ooii e e 69
Figure 32 — Send/request DLPDU of fixed length with no datacooo s 70
Figure 33 — Token DLPDU and send/request DLPDU of fixed length with data...................... 70
Figure 34 — Send/request DLPDU with variable data field length......................col, 71
Figure 35 — Send/request DLPDU of fixed length with no datacocoo s 71
Figure 36 — Token DLPDU and send/request DLPDU of fixed length with data...................... 72
Figure 37 — Send/request DLPDU with variable data field length......................o, 72
Figure 38 — DL-state-diagram ... e 74
Figure 39 — Overview of clock synchronization............cooooiiiiiiii 80
Figure 40 — Time master state machine ... 81
Figure 41 — Time receiver state machine ... 82
Figure 42 — Clock SYNChronizationcooiiiiiiiii e 83
Figure A.1 — Structuring of the protocol machines...........c..cooiiiii 85
Figure A.2 — Structure of the SRU Machine...........oooiiiiiiiii 144
Figure B.1 — Example of FCS generation for Type 3 (synchronous)ccocceeviiiiiiiinnnnns, 161
Figure B.2 — Example of FCS syndrome checking on reception for Type 3

(SYNCRTONOUS) ..ttt 161
Figure C.1 — Derivation of the token holding time (TTH) ... vvoveeii e, 164
Figure C.2 — No usage of token holding time (TTH) . ceuveemieii e 165
Figure C.3 — Usage of token holding time (TTH) for message transfer (equivalence

between TTH of each Master station) ..o 166
Figure C.4 — Usage of token holding time (TTH) in different working load situations 168
Table 1 — FCS length, polynomials and constants by Type 3 synchronous............................ 23
Table 2 — Characteristic features of the fieldbus data-link protocol..................cil. 25
Table 3 — Transmission fuNCtion COde e 59
Table 4 — FCB, FCV iN F@SPONAETouiiiitii e e e e eaas 61
Table 5 — Operating Parametersooiiiiii i 73
Table A.1 — Assignment of state machines. ... 86
Table A.2 — Data FESOUICE ... et ettt 87
Table A.3 — Primitives issued by DL-User to FLC ..., 91
Table A.4 — Primitives issued by FLC t0 DL-USer ..ot 91
Table A.5 — Primitives issued by DL-User to DLM ... 93
Table A.6 — Primitives issued by DLM t0 DL-USEerooiiiiii e, 94
Table A.7 — Parameters used with primitives exchanged between DL-User and FLC............. 94
Table A.8 — Parameters used with primitives exchanged between DL-User and DLM............. 95
Table A.9 — FLC/DLM state table ... 96
Table A.10 — FLC / DLM function table...........cooiiii e 109
Table A.11 — Primitives issued by DLM to MACo 116

Table A.12 — Primitives issued by MAC t0 DLM.. ... 116

61158-4-3 © IEC:2007(E) -5-

Table A.13 — Parameters used with primitives exchanged between DLM and MAC 116
Table A.14 — Local MAC variables ..o 117
Table A.15 — MAC state table ... 117
Table A.16 — MAC function table.........oo e 139
Table A.17 — Primitives issued by DLM t0 SRCo 145
Table A.18 — Primitives issued by SRC to DLM ... 146
Table A.19 — Primitives issued by MAC t0 SRC.......coiiiiiiii e 146
Table A.20 — Primitives issued by SRC to MAC. ..., 146
Table A.21 — Parameters used with primitives exchanged between MAC and SRC 147
Table A.22 — FC SITUCIUIE ...coe et 147
Table A.23 — Local variables of SRC.... ... 147
Table A.24 — SRC state table ... 148

Table A.25 — SRC fUNCHONS ... e et 160

1)

8)

-6- 61158-4-3 © IEC:2007(E)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

INDUSTRIAL COMMUNICATION NETWORKS -
FIELDBUS SPECIFICATIONS -

Part 4-3: Data-link layer protocol specification — Type 3 elements

FOREWORD

The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.

The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.

IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.

IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.

All users should ensure that they have the latest edition of this publication.

No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.

Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

NOTE Use of some of the associated protocol types is restricted by their intellectual-property-right holders. In all
cases, the commitment to limited release of intellectual-property-rights made by the holders of those rights permits
a particular data-link layer protocol type to be used with physical layer and application layer protocols in Type
combinations as specified explicitly in the IEC 61784 series. Use of the various protocol types in other
combinations may require permission from their respective intellectual-property-right holders.

IEC draws attention to the fact that it is claimed that compliance with this standard may involve the use of patents
as follows, where the [xx] notation indicates the holder of the patent right:

Type 3 and possibly other types:

DE 36 43979 C2 [SI] Deterministisches Zugriffsverfahren nach dem Tokenprinzip fir eine
Datenlbertragung

DE 36 43 979 A1 [S1] Deterministisches Zugriffsverfahren nach dem Tokenprinzip fur eine
Dateniubertragung

IEC takes no position concerning the evidence, validity and scope of these patent rights.

The holders of these patent rights have assured IEC that they are willing to negotiate licences under reasonable
and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of
the holders of these patent rights are registered with IEC. Information may be obtained from:

[Sh: SIEMENS AG
Ludwig Winkel
Siemensallee 84
D-76181 Karlsruhe
Germany

61158-4-3 © IEC:2007(E) -7-

Attention is drawn to the possibility that some of the elements of this standard may be the subject of patent rights
other than those identified above. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61158-4-3 has been prepared by subcommittee 65C: Industrial
networks, of IEC technical committee 65: Industrial-process measurement, control and
automation.

This first edition and its companion parts of the IEC 61158-4 subseries cancel and replace
IEC 61158-4:2003. This edition of this part constitutes an editorial revision.

This edition of IEC 61158-4 includes the following significant changes from the previous
edition:

a) deletion of the former Type 6 fieldbus, and the placeholder for a Type 5 fieldbus data link
layer, for lack of market relevance;

b) addition of new types of fieldbuses;
c) division of this part into multiple parts numbered -4-1, -4-2, ..., -4-19.
The text of this standard is based on the following documents:

FDIS Report on voting
65C/474/FDIS 65C/485/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

This publication has been drafted in accordance with ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until
the maintenance result date indicated on the IEC web site under http://webstore.iec.ch in the
data related to the specific publication. At this date, the publication will be:

+ reconfirmed;

* withdrawn;

* replaced by a revised edition, or

+ amended.

NOTE The revision of this standard will be synchronized with the other parts of the IEC 61158 series.

The list of all the parts of the IEC 61158 series, under the general title Industrial
communication networks — Fieldbus specifications, can be found on the IEC web site.

http://webstore.iec.ch/

-8- 61158-4-3 © IEC:2007(E)

INTRODUCTION

This part of IEC 61158 is one of a series produced to facilitate the interconnection of
automation system components. It is related to other standards in the set as defined by the
“three-layer” fieldbus reference model described in IEC/TR 61158-1.

The data-link protocol provides the data-link service by making use of the services available
from the physical layer. The primary aim of this standard is to provide a set of rules for
communication expressed in terms of the procedures to be carried out by peer data-link
entities (DLEs) at the time of communication. These rules for communication are intended to
provide a sound basis for development in order to serve a variety of purposes:

a) as a guide for implementors and designers;

b) for use in the testing and procurement of equipment;

c) as part of an agreement for the admittance of systems into the open systems environment;
d) as a refinement to the understanding of time-critical communications within OSI.

This standard is concerned, in particular, with the communication and interworking of sensors,
effectors and other automation devices. By using this standard together with other standards
positioned within the OSI or fieldbus reference models, otherwise incompatible systems may
work together in any combination.

61158-4-3 © IEC:2007(E) -9-

INDUSTRIAL COMMUNICATION NETWORKS -
FIELDBUS SPECIFICATIONS -

Part 4-3: Data-link layer protocol specification — Type 3 elements

1 Scope

1.1 General

The data-link layer provides basic time-critical messaging communications between devices in
an automation environment.

This protocol provides communication opportunities to a pre-selected “master” subset of data-
link entities in a cyclic asynchronous manner, sequentially to each of those data-link entities.
Other data-link entities communicate only as permitted and delegated by those master data-
link entities.

For a given master, its communications with other data-link entities can be cyclic, or acyclic
with prioritized access, or a combination of the two.

This protocol provides a means of sharing the available communication resources in a fair
manner. There are provisions for time synchronization and for isochronous operation.

1.2 Specifications
This standard specifies

a) procedures for the timely transfer of data and control information from one data-link user
entity to a peer user entity, and among the data-link entities forming the distributed data-
link service provider;

b) the structure of the fieldbus DLPDUs used for the transfer of data and control information
by the protocol of this standard, and their representation as physical interface data units.
1.3 Procedures
The procedures are defined in terms of
a) gwaIiDnLtJeractions between peer DL-entities (DLEs) through the exchange of fieldbus
S;

b) the interactions between a DL-service (DLS) provider and a DLS-user in the same system
through the exchange of DLS primitives;

c) the interactions between a DLS-provider and a Ph-service provider in the same system
through the exchange of Ph-service primitives.

1.4 Applicability

These procedures are applicable to instances of communication between systems which
support time-critical communications services within the data-link layer of the OSI or fieldbus
reference models, and which require the ability to interconnect in an open systems
interconnection environment.

Profiles provide a simple multi-attribute means of summarizing an implementation’s
capabilities, and thus its applicability to various time-critical communications needs.

-10 - 61158-4-3 © IEC:2007(E)

1.5 Conformance
This standard also specifies conformance requirements for systems implementing these

procedures. This standard does not contain tests to demonstrate compliance with such
requirements.

2 Normative references

The following referenced documents are indispensable for the application of this standard. For
dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including any amendments) applies.

IEC 61158-2 (Ed.4.0), Digital data communications for measurement and control — Fieldbus
for use in industrial control systems — Part 2: Physical layer specification and service
definition

IEC 61158-3-3, Digital data communications for measurement and control — Fieldbus for use
in industrial control systems — Part 3-3: Data link service definition — Type 3 elements

ISO/IEC 2022, Information technology — Character code structure and extension techniques

ISO/IEC 7498-1, Information technology — Open Systems Interconnection — Basic Reference
Model: The Basic Model

ISO/IEC 7498-3, Information technology — Open Systems Interconnection — Basic Reference
Model: Naming and addressing

ISO/IEC 10731, Information technology — Open Systems Interconnection — Basic Reference
Model — Conventions for the definition of OSI services

ISO 1177, Information processing — Character structure for start/stop and synchronous
character oriented transmission

3 Terms, definitions, symbols and abbreviations

For the purposes of this standard, the following terms, definitions, symbols and abbreviations
apply.

3.1 Reference model terms and definitions

This standard is based in part on the concepts developed in ISO/IEC 7498-1 and
ISO/IEC 7498-3, and makes use of the following terms defined therein.

3.1.1 called-DL-address [7498-3]
3.1.2 calling-DL-address [7498-3]
3.1.3 centralized multi-end-point-connection [7498-1]
3.1.4 correspondent (N)-entities [7498-1]

correspondent DL-entities (N=2)
correspondent Ph-entities (N=1)

3.1.5 demultiplexing [7498-1]
3.1.6 DL-address [7498-3]

61158-4-3 © IEC:2007(E)

3.1.7 DL-address-mapping

3.1.8 DL-connection

3.1.9 DL-connection-end-point

3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1

3.1

3.1

.10
11
12
13
14
.15
.16
A7
.18
.19
.20
.21
.22
.23
.24
.25
.26
.27
.28
.29
.30
.31
.32
.33
.34
.35
.36

37

DL-connection-end-point-identifier
DL-connection-mode transmission
DL-connectionless-mode transmission
DL-data-sink

DL-data-source
DL-duplex-transmission
DL-facility

DL-local-view

DL-name

DL-protocol
DL-protocol-connection-identifier
DL-protocol-control-information
DL-protocol-data-unit
DL-protocol-version-identifier
DL-relay
DL-service-connection-identifier
DL-service-data-unit
DL-simplex-transmission
DL-subsystem

DL-user-data

flow control

layer-management

multiplexing
naming-(addressing)-authority
naming-(addressing)-domain
naming-(addressing)-subdomain
(N)-entity

DL-entity

Ph-entity

(N)-interface-data-unit

DL-service-data-unit (N=2)
Ph-interface-data-unit (N=1)

-11 -

[7498-1]
[7498-1]
[7498-1]
[7498-1]
[7498-1]
[7498-1]
[7498-1]
[7498-1]
[7498-1]
[7498-1]
[7498-3]
[7498-3]
[7498-1]
[7498-1]
[7498-1]
[7498-1]
[7498-1]
[7498-1]
[7498-1]
[7498-1]
[7498-1]
[7498-1]
[7498-1]
[7498-1]
[7498-1]
[7498-3]
[7498-3]
[7498-3]
[7498-3]
[7498-1]

[7498-1]

-12 - 61158-4-3 © IEC:2007(E)

3.1.38 (N)-layer [7498-1]
DL-layer (N=2)
Ph-layer (N=1)

3.1.39 (N)-service [7498-1]
DL-service (N=2)
Ph-service (N=1)

3.1.40 (N)-service-access-point [7498-1]
DL-service-access-point (N=2)
Ph-service-access-point (N=1)

3.1.41 (N)-service-access-point-address [7498-1]
DL-service-access-point-address (N=2)
Ph-service-access-point-address (N=1)

3.1.42 peer-entities [7498-1]
3.1.43 Ph-interface-control-information [7498-1]
3.1.44 Ph-interface-data [7498-1]
3.1.45 primitive name [7498-3]
3.1.46 reassembling [7498-1]
3.1.47 recombining [7498-1]
3.1.48 reset [7498-1]
3.1.49 responding-DL-address [7498-3]
3.1.50 routing [7498-1]
3.1.51 segmenting [7498-1]
3.1.52 sequencing [7498-1]
3.1.53 splitting [7498-1]
3.1.54 synonymous name [7498-3]
3.1.55 systems-management [7498-1]

3.2 Service convention terms and definitions

This standard also makes use of the following terms defined in ISO/IEC 10731 as they apply
to the data-link layer:

3.2.1 acceptor
3.2.2 asymmetrical service

3.2.3 confirm (primitive);
requestor.deliver (primitive)

3.2.4 deliver (primitive)
3.2.5 DL-confirmed-facility
3.2.6 DL-facility

3.2.7 DL-local-view

61158-4-3 © IEC:2007(E) -13 -

3.2.8 DL-mandatory-facility

3.2.9 DL-non-confirmed-facility
3.2.10 DL-provider-initiated-facility
3.2.11 DL-provider-optional-facility

3.2.12 DL-service-primitive;
primitive

3.2.13 DL-service-provider

3.2.14 DL-service-user

3.2.15 DL-user-optional-facility

3.2.16 indication (primitive)
acceptor.deliver (primitive)

3.2.17 multi-peer

3.2.18 request (primitive);
requestor.submit (primitive)

3.2.19 requestor

3.2.20 response (primitive);
acceptor.submit (primitive)

3.2.21 submit (primitive)
3.2.22 symmetrical service

3.3 Common terms and definitions

NOTE Many definitions are common to more than one protocol Type; they are not necessarily used by all protocol
Types.

3.31

DL-segment, link, local link

single DL-subnetwork in which any of the connected DLEs may communicate directly, without
any intervening DL-relaying, whenever all of those DLEs that are participating in an instance
of communication are simultaneously attentive to the DL-subnetwork during the period(s) of
attempted communication

3.3.2

DLSAP

distinctive point at which DL-services are provided by a single DL-entity to a single higher-
layer entity

NOTE This definition, derived from ISO/IEC 7498-1, is repeated here to facilitate understanding of the critical
distinction between DLSAPs and their DL-addresses. (See Figure 1.)

-14 - 61158-4-3 © IEC:2007(E)

DLS-user-entity

DLS-user-entity

DLS-users

e

/7, / N
s, DLSAP- N 7 N
7 -
DLSAP- address “group DL- DLSAP-
addresses address address
DL-layer DL-entity j
\—/ v
Ph-layer

NOTE 1 DLSAPs and PhSAPs are depicted as ovals spanning the boundary between two adjacent layers.
NOTE 2 DL-addresses are depicted as designating small gaps (points of access) in the DLL portion of a DLSAP.

NOTE 3 A single DL-entity may have multiple DLSAP-addresses and group DL-addresses associated with a
single DLSAP.

Figure 1 — Relationships of DLSAPs, DLSAP-addresses and group DL-addresses

3.3.3

DL(SAP)-address

either an individual DLSAP-address, designating a single DLSAP of a single DLS-user, or a
group DL-address potentially designating multiple DLSAPs, each of a single DLS-user.

NOTE This terminology is chosen because ISO/IEC 7498-3 does not permit the use of the term DLSAP-address to
designate more than a single DLSAP at a single DLS-user

3.3.4
(individual) DLSAP-address
DL-address that designates only one DLSAP within the extended link

NOTE A single DL-entity may have multiple DLSAP-addresses associated with a single DLSAP.

3.3.5

extended link

DL-subnetwork, consisting of the maximal set of links interconnected by DL-relays, sharing a
single DL-name (DL-address) space, in which any of the connected DL-entities may
communicate, one with another, either directly or with the assistance of one or more of those
intervening DL-relay entities

NOTE An extended link may be composed of just a single link.

3.3.6
frame
denigrated synonym for DLPDU

61158-4-3 © IEC:2007(E) -15 -

3.3.7

group DL-address

DL-address that potentially designates more than one DLSAP within the extended link. A
single DL-entity may have multiple group DL-addresses associated with a single DLSAP. A
single DL-entity also may have a single group DL-address associated with more than one
DLSAP

3.3.8
node
single DL-entity as it appears on one local link

3.3.9
receiving DLS-user
DL-service user that acts as a recipient of DL-user-data

NOTE A DL-service user can be concurrently both a sending and receiving DLS-user.

3.3.10
sending DLS-user
DL-service user that acts as a source of DL-user-data

3.4 Additional Type 3 definitions

3.4.1
acknowledge DLPDU
reply DLPDU that contains no DLSDU

3.4.2
address extension
DLSAP address or region/segment address

3.4.3
bit time
time to transmit one bit

3.4.4
confirmed message exchange
complete data transfer with request and acknowledgement or response DLPDU

3.4.5
controller_type
hardware class of the communications entity

3.4.6
current master
token holder

3.4.7
data DLPDU
DLPDU that carries a DLSDU from a local DLS-user to a remote DLS-user

3.4.8
DL_status
status that specifies the result of the execution of the associated request

3.4.9

GAP

range of station (DLE) DL-addresses from this station (TS) to its successor (NS) in the logical
token ring, excluding stations above HSA

-16 - 61158-4-3 © IEC:2007(E)

3.4.10
GAP maintenance
registration of new Master and slave stations

3.4.11

isochronous mode

special operational mode that implies both a constant (isochronous) cycle with a fixed
schedule of high and low priority messages, and the synchronization of the DLS-users with
this constant (isochronous) cycle

3.4.12
local DLS-user
DLS-user that initiates the current service

3.4.13
message exchange
complete confirmed or unconfirmed data transfer

3.4.14
region/segment address
address extension that identifies a particular fieldbus subnetwork

NOTE This supports DL-routing between fieldbusses.

3.4.15
request data
DLSDU provided by the remote DLS-user to the local DLS-user

3.4.16

remote DLE

addressed DLE of a service request (that is, the intended receiving DLE of any resulting
send/request DLPDU)

3.4.17

remote DLS-user

addressed DLS-user of a service request (that is, the intended receiver of any resulting
indication primitive)

3.4.18
reply DLPDU
DLPDU transmitted from a remote DLE to the initiating (local) DLE, and possibly other DLEs

NOTE When the remote DLE is a Publisher, the reply DLPDU also can be sent to several remote DLEs.

3.4.19
response DLPDU
reply DLPDU that carries a DLSDU from a remote DLS-user to local DLS-user

3.4.20
send data
DLSDU provided by a local DLS-user to a remote DLS-user

3.4.21

send/request DLPDU

DLPDU that carries either a request for data or a DLSDU or both from a local DLS-user to a
remote DLS-user

61158-4-3 © IEC:2007(E) -17 -

3.4.22
time master
device which is able to send clock synchronization DLPDUs

NOTE Link devices have time master functionality.

3.4.23
time receiver
device which is able to be time synchronized by a time Master

3.4.24
token holder
Master station that controls bus access

3.4.25

token passing

medium access method, in which the right to transmit is passed from master station to master
station in a logical ring

3.5 Common symbols and abbreviations

3.5.1 Data units

3.56.11 DLPDU DL-protocol data unit
3.5.1.2 DLSDU DL-service data unit

3.5.1.3 PhiDU Ph-interface data unit
3.5.1.4 PhPDU Ph-protocol data unit

3.5.2 Miscellaneous

3.5.21 DL- data link layer (as a prefix)

3.5.2.2 DLCEP DL-connection endpoint

3.5.2.3 DLE DL-entity (the local active instance of the Data Link layer)
3.5.2.4 DLL DL-layer

3.5.2.5 DLM- DL-management (as a prefix)

3.5.2.6 DLMS DL-management-service

3.5.2.7 DLS DL-service

3.5.2.8 DLSAP DL-service access point

3.5.2.9 FIFO first-in first-out (queuing method)

3.5.2.10 LLC logical link control

3.5.2.11 MAC medium access control

3.5.212 OSI open systems interconnection

3.5.213 Ph- physical layer (as a prefix)

3.5.2.14 PhE Ph-entity (the local active instance of the Physical layer)

3.5.2.15 PhL Ph-layer

3.5.2.16 PhS
3.5.2.17 PhSAP
3.5.2.18 QoS

-18 - 61158-4-3 © IEC:2007(E)

Ph-service
Ph-service access point

quality of service

3.6 Type 3 symbols and abbreviations

3.6.1 ACK
3.6.2 ASM
3.6.3 ASP
3.6.4 BusID

3.6.5 CRX
3.6.6 CS
3.6.7 CTX
3.6.8 DA
3.6.9 DAE

3.6.10 D_SAP

3.6.11 D_SAP_index

3.6.12 DXM
3.6.13 ED
3.6.14 EOA
3.6.15 EOD
3.6.16 EODA
3.6.17 EXT
3.6.18 FC
3.6.19 FCB

3.6.20 FCV

3.6.21 FCS

3.6.22 FLC
3.6.23 G

acknowledge(ment) DLPDU
active spare time message
active spare time period

bus identification, an address extension (region/DL-segment
address) that identifies a particular bus as supporting routing
between DL-segments

character receive execution
clock synchronization

character transmit execution
destination address of a DLPDU

destination address extension(s) of a DLPDU, which convey
D_SAP_index and/or destination bus ID

destination service access point, the DLSAP associated with the
remote DLS-user

destination service access point index — that component of a
DLSAP address which designates a DLSAP and remote DLS-
user within the remote DLE

data exchange multicast

end delimiter of a DLPDU

END-OF-ACTIVITY

END-OF-DATA

END-OF-DATA-AND-ACTIVITY

address extension bit of a DLPDU

frame control (frame type) field of a DLPDU

frame count bit of a DLPDU (FC field) used to eliminate lost or
duplicated DLPDUs

frame count bit valid bit of a DLPDU, indicates whether the FCB
is to be evaluated

frame check sequence (synchronous) or
frame checksum (asynchronous)

fieldbus link control

GAP update factor, the number of token rotations between GAP
maintenance (update) cycles

61158-4-3 © IEC:2007(E)

3.6.24
3.6.25
3.6.26

3.6.27
3.6.28

3.6.29
3.6.30
3.6.31
3.6.32

3.6.33

3.6.34
3.6.35
3.6.36
3.6.37
3.6.38
3.6.39
3.6.40
3.6.41
3.6.42
3.6.43

3.6.44
3.6.45
3.6.46
3.6.47
3.6.48

3.6.49

3.6.50

GAPL
IsoM
Hd

HSA

LE
LEr
LMS
LR

LS

Isb
max
MCT
MP

msb
MSRD

mt

NA

na
NIL
NO

np
NR

NRZ

NS

- 19 —

GAP list containing the status of all stations in this station's GAP
isochronous mode

Hamming distance, a measure of DLPDU integrity, the minimum
number of bit errors that can cause acceptance of a spurious
DLPDU

highest station address installed (configured) on this fieldbus

length of the information field, the part of a DLPDU that is
checked by the FCS

field giving the length of a DLPDU beyond the fixed part
field that repeats the length to increase DLPDU integrity
list of master stations

local resource not available or not sufficient (DL/DLM_status of
the service primitive)

local service not activated at DL-service access point or local
DLSAP not activated (DL/DLM_status of the service primitive)

least significant bit of a field or octet

the arithmetic maximum function

multicast

message transfer message retry transfer periods
number of retries

most significant bit of a field or octet

DLS: Send and Request Data with Multicast reply
number of retries per token rotation

number of stations

no acknowledgement/response (DL/DLM_status of the service
primitive)

number of active stations

locally determined value

not ok (DL/DLM_status of the service primitive)
number of passive stations

no response DL-data acknowledgement negative and send data
ok (DL_status of the service primitive)

non-return-to-zero (PhL), an encoding technique where
transitions occur only when successive data bits have different
values

next station, the station to which this master will pass the token

3.6.51

3.6.52
3.6.53
3.6.54
3.6.55

3.6.56
3.6.57

3.6.58

3.6.59
3.6.60
3.6.61

3.6.62

3.6.63

3.6.64
3.6.65

3.6.66
3.6.67
3.6.68
3.6.69
3.6.70

3.6.71
3.6.72
3.6.73
3.6.74
3.6.75
3.6.76
3.6.77

OK

PhICI
PhPCI
PON
PS

PSP
RDH

RDL

Res
RET
RR

RS

RSYS

SA

SAE

sc

SD1 to SD4
SDA
SDA_HI/L
SDX

SDL1 to SDL5
SDN

SDN_HIL

SM

SOA

SRC

SRD

- 20 - 61158-4-3 © IEC:2007(E)

service finished according to the rules (DL/DLM_status of the
service primitive)

PhL Interface Control Information [ISO/IEC 7498-1]
PhL Protocol Control Information [ISO/IEC 7498-1]
power on transition occurs at a station

previous station, the station which passes the token to this
master station

passive spare time period

response DL-data high and no resource for send data
(DL/DLM_status of the service primitive)

response DL/DLM-data low and no resource for send data
(DL/DLM_status of the service primitive)

reserved

retry

no resource for send data and no response DL-data available
(negative acknowledgement) (DL/DLM_status of the service
primitive)

no service, or no service activated at remote DLSAP (negative
acknowledgement) (DL/DLM_status of the service primitive)

system message rate (in message transfer periods per second)
at which confirmed DL-message exchanges are performed

source address of a DLPDU

source address extension(s) of a DLPDU, which convey
S_SAP_index and/or source bus ID

single character acknowledge DLPDU

start delimiters of asynchronous DLPDU transmission
Send Data with Acknowledge (DL-service)

Send Data with Acknowledge high/low (DLPDU Function)

start delimiter of asynchronous or synchronous DLPDU
transmission

start delimiters of synchronous DLPDU transmission

Send Data with No Acknowledge (DL-service)

Send Data with No Acknowledge high/low (DLPDU Function)
state machine

START-OF-ACTIVITY

send receive control

Send and Request Data with Reply (DL-service)

61158-4-3 © IEC:2007(E)

3.6.78
3.6.79
3.6.80

3.6.81

3.6.82
3.6.83

3.6.84
3.6.85
3.6.86

3.6.87
3.6.88

3.6.89
3.6.90

3.6.91
3.6.92

3.6.93
3.6.94
3.6.95
3.6.96
3.6.97
3.6.98

3.6.99
3.6.100
3.6.101

3.6.102

3.6.103

3.6.104

3.6.105
3.6.106

SRD_HIL
SRU
S_SAP

S_SAP_index

Stn
SYN

TAR
TASM
tBIT
TCSI
Ter
TGUD
Tip
TIM
Tmp
TP
TPSP
TPTG
TQUI
TRCT
TRD
TRDY
TRES
TRR
TS
TSIR
TsD
TSDI

TSDR

- 21 -

Send and Request Data with Reply high/low (DLPDU Function)
send receive unit

source service access point, the DLSAP associated with the
initiating local DLS-user

source service access point index — a component of a DLSAP-
address which designates that DLSAP within the DLE at which
the transaction is being initiated

station, a device implementing a DLE with a fieldbus DL-address
synchronizing bits of a DLPDU (period of idle), which guarantees
the specified DLPDU integrity and allows for receiver
synchronization

time to transmit an acknowledgement/response DLPDU

ASM message time

bit time

clock synchronization interval time

isochronous cycle time

GAP update time

idle time

timer state machine

message transfer period

token transfer period
passive spare time

post transmission gap time
quiet time

real isochronous cycle time
receive delay time

ready time

spare time

real rotation time

this station

send/request DLPDU time
send delay time

station delay of initiator

station delay of responder

- 22 - 61158-4-3 © IEC:2007(E)

3.6.107 TSET setup time

3.6.108 TsH time shift

3.6.109 TgL slot time

3.6.110 Tgm safety margin time

3.6.111 TgRr system reaction time

3.6.112 TSYN synchronization time

3.6.113 TSYNI synchronization interval time

3.6.114 T1c token cycle time

3.6.115 T1p transmission delay time

3.6.116 TTf token DLPDU time

3.6.117 TTH token holding time

3.6.118 T1o timeout time

3.6.119 Ttp token transfer period

3.6.120 TTR target rotation time

3.6.121 UART universal asynchronous receiver/transmitter
3.6.122 UC UART character

3.6.123 UE negative acknowledgement, remote user interface error

(DL/DLM_status of the service primitive)

4 Common DL-protocol elements

4.1 Frame check sequence
4.1.1 General

Any reference to bit K of an octet is a reference to the bit whose weight in a one-octet
unsigned integer is 2K.

NOTE 1 This is sometimes referred to as “little endian” bit numbering.

As in other International Standards (see Note 2), DLPDU-level error detection is provided by
calculating and appending a multi-bit frame check sequence (FCS) to the other DLPDU fields
during transmission to form a "systematic code word"" of length n consisting of kK DLPDU
message bits followed by n - k redundant bits, and by calculating during reception that the
message and concatenated FCS form a legal (n,k) code word. The mechanism for this
checking is as follows:

NOTE 2 For example, ISO/IEC 3309, ISO/IEC 8802 and ISO/IEC 9314-2.

The generic form of the generator polynomial for this FCS construction is specified in
equation (4) and the polynomial for the receiver’'s expected residue is specified in equation

1) W. W. Peterson and E. J. Weldon, Jr., Error Correcting Codes (2nd edition), MIT Press, Cambridge, 1972.

61158-4-3 © IEC:2007(E) - 23 -

(9). The specific polynomials for DL-protocol type 3 are specified in Table 1. An exemplary
implementation is shown in Annex B.

Table 1 — FCS length, polynomials and constants by Type 3 synchronous

Item Value

n-k 16

G(x) X16 + X12 + X11 + X10 + X8 + X7 + X6 + X3 + X2 + X + 1 (see Notes 1, 2, 3)
R(x) X185+ X14 + X13 + X9 + X8 + X7 + X4 + X2 (see Note 4)

NOTE 1 Code words D(X) constructed from this G(X) polynomial have Hamming distance 4 for lengths < 344
octets and Hamming distance 5 for lengths < 15 octets.

NOTE 2 This G(X) polynomial is relatively prime to all, and is thus not compromised by any, of the polynomials
commonly used in DCEs (modems): the differential encoding polynomial 1 + X-1 and all primitive scrambling
polynomials of the form 1 + X- + Xk,

NOTE 3 This G(X) polynomial is the optimal 16-bit polynomial for burst error detection over DLPDUs of 300
octets or less when the statistics of the error burst have a Poisson distribution (as is the usual case).

NOTE 4 The remainder R(x) should be 1110 0011 1001 0100 (X5 to X0, respectively) in the absence of errors.

4.1.2 At the sending DLE

The original message (that is, the DLPDU without an FCS), the FCS, and the composite
message code word (the concatenated DLPDU and FCS) shall be regarded as vectors M(X),
F(X), and D(X), of dimension k, n -k, and n, respectively, in an extension field over Base
Galois Field(2). If the message bits are mq ... mk and the FCS bits are f,.x-1 ... fg, where

mq ... mg form the first octet sent,
MgN-7 -.- M8N form the Nth octet sent,
f7 ... fo form the last octet sent, and

m+ is sent by the first PhL symbol(s) of the message and fg is sent by the

last PhL symbol(s) of the message (not counting PhL framing
information),

NOTE 1 This “as transmitted” ordering is critical to the error detection properties of the FCS.

then the message vector M(X) shall be regarded to be
M(X) = mqXk1 + moXk-2 + .. + mg.1 X! + mg (1)

and the FCS vector F(X) shall be regarded to be
F(X) = fpkqXn-k1+ . +fg (2)
= f15X15+ ... +fp

The composite vector D(X), for the complete DLPDU, shall be constructed as the
concatenation of the message and FCS vectors

D(X) M(X) Xn-k + F(X) (3)
m4Xn-1 + moXn-2 + .. + myXn-k + f_ 4 Xn-k-1+ + fg
mqXn-1 + moXn-2 + . + mgX16 + f15X15+ . + f

The DLPDU presented to the PhL shall consist of an octet sequence in the specified order.

The redundant check bits f_k-1 ... fg of the FCS shall be the coefficients of the remainder
F(X), after division by G(X), of L(X) (Xk + 1) + M(X) Xn-k

where G(X) is the degree n-k generator polynomial for the code words

- 24 - 61158-4-3 © IEC:2007(E)

G(X)

Xn-k + gnok-qXn-k-1 + + 1 (4)
X16 4+ X12 + X114+ X10 + X8 + X6 + X3 + X2 + X + 1
and L(X) is the maximal weight (all ones) polynomial of degree n-k-1

Xn-k + 1
L(X) = X+ 1 = Xn-k-1 + Xn-k-2 + + X + 1 (5)

X15 + X14 + X13 + X12 + . + X2+ X + 1

F(X) = L(X) (Xk+ 1)+ M(X) Xnk (modulo G(X)) (6)
NOTE 2 The L(X) terms are included in the computation to detect initial or terminal message truncation or
extension by adding a length-dependent factor to the FCS.

NOTE 3 As a typical implementation when n-k = 16, the initial remainder of the division is preset to all ones. The
transmitted message bit stream is multiplied by X"-k and divided (modulo 2) by the generator polynomial G(X),
specified in equation (4). The ones complement of the resulting remainder is transmitted as the (n-k)-bit FCS, with
the coefficient of Xn-k-1 transmitted first.

4.1.3 At the receiving DLE

The octet sequence indicated by the PhE shall be concatenated into the received DLPDU and
FCS, and regarded as a vector V(X) of dimension u

V(X) = vqXu-1+ voXu-2 + .+ vy 1X + vy (7)
NOTE 1 Because of errors u can be different than n, the dimension of the transmitted code vector.

A remainder R(X) shall be computed for V(X), the received DLPDU and FCS, by a method
similar to that used by the sending DLE (see 4.1.2) in computing F(X)

R(X) L(X) Xu + V(X) Xn-k (modulo G(X)) (8)
rn-k-1X"-k-1+ .. +rp

Define E(X) to be the error code vector of the additive (modulo-2) differences between the
transmitted code vector D(X) and the received vector V(X) resulting from errors encountered
(in the PhS provider and in bridges) between sending and receiving DLEs.

E(X) = D(X)+V(X) (9)

If no error has occurred, so that E(X) = 0, then R(X) will equal a non-zero constant remainder
polynomial

Rok(X) = L(X) Xnk (modulo G(X)) (10)

whose value is independent of D(X). Unfortunately R(X) will also equal Rgk(X) in those cases

where E(X) is an exact non-zero multiple of G(X), in which case there are “undetectable”
errors. In all other cases, R(X) will not equal Rgk(X); such DLPDUs are erroneous and shall

be discarded without further analysis.

NOTE 2 As a typical implementation, the initial remainder of the division is preset to all ones. The received bit
stream is multiplied by Xn-k and divided (modulo 2) by the generator polynomial G(X), specified in equation (4).

5 Overview of the DL-protocol

NOTE Annex A specifies a number of finite state machines used by the DLE to provide its low-level and high-level
protocol functions. The specification of Annex A is complementary to the textual specification in this and related
clauses in the body of this standard. In case of conflict the requirements of Annex A take precedence.

5.1 General

From the requirements of the various application fields, for example, process control, factory
automation, power distribution, building automation, primary process industry etc., the
following characteristic features of the fieldbus data-link protocol are resulting (see Table 2).

61158-4-3 © IEC:2007(E) - 25—

Table 2 — Characteristic features of the fieldbus data-link protocol

Feature Description

Station types Masters (active stations, with bus access control); Slaves (passive stations,
without bus access control); preferably at most 32 masters, optionally up to
127, if the applications are not time critical

Station addressing 0 to 127 (127 = global addresses for broad-cast and multicast messages),
address extension for region/DL-segment address and service access address
(DLSAP), 6 bit each

Bus access Hybrid: decentralized and central; "token-passing" between master stations
and "Master-Slave" between Master and slave stations

Data transfer services Send Data with/without Acknowledge
Send and Request Data with Reply

Send and Request Data with Multicast Reply

Clock Synchronization

DLPDU length max. 255 octets per DLPDU,

0 to 246 octets for each data unit without address extension

Transmission speed Depending on network topology and cable lengths, for example, step-wise from
9,6 to 12000 kBit/s

Transmission characteristic Half duplex, asynchronous and synchronous transmission

Data integrity asynchronous Messages with Hamming distance (Hd) = 4, sync slip detection, special

transmission sequence to avoid loss or duplication of data

Data integrity synchronous Hamming distance (Hd) = 4 for DLPDU lengths shorter than 255 octets and Hd

transmission = 5 for lengths shorter than 15 octets, special sequence to avoid loss or

duplication of data

NOTE 1 The DLPDU format for asynchronous transmission is the format FT 1.2 (asynchronous transmission with
start-stop synchronization) for Telecontrol Equipment and Systems, which is specified in IEC 60870-5-1.

NOTE 2 The DLPDU format for synchronous transmission is based on octet characters.

5.2 Overview of the medium access control and transmission protocol

The fieldbus data-link layer uses controlled medium access accomplished by a hybrid medium
access method: a decentralized method according to the principle of token-passing is
underlain by a central method according to the master-slave principle. Medium access
control may be exercised by each master station (active station). The token-passing is
characterized by the following features:

a) Token-passing allows fair media access for all token holders.

EXAMPLE: When four token holders produce the same amount of similar priority data they will share the media so
that on average each of them can use 25% of the available message transfer time. With the token-passing
procedure, rules exist to share the message transfer time between the token holders without discrimination of any
of them. In case of usage of the whole of the available token holding time by one token holder in one token rotation
this token holder is limited to one high priority message in the next token rotation after which it has to transfer the
token immediately.

b) Token-passing guarantees short reaction time.
EXAMPLE: For urgent messages, a maximum delay is specified for delivery of the information. Thus, a
configurable time (TTR) specifies the target rotation time. Independent of the number of token holders and the

amount of messages that have to be sent, at least one urgent message can be sent by each token holder. Thus, a
short reaction time is guaranteed for one urgent message from each token holding station in each token holding
period.

c) Token-passing allows flexible (re-)configuration.

EXAMPLE: When a token holder is switched on or off, it will be automatically included or excluded in the logical
ring. In the next token rotation after detection and inclusion in the logical token ring, the new token holder has the
same rights to send messages as the other token holders. The sharing of the bus message transfer time is
organized automatically without changing of parameters of the other token holders.

Medium access control may be exercised by each master station (active station) if the station
has the token. The token is passed from master station to master station in a logical ring and

- 26 - 61158-4-3 © IEC:2007(E)

thus determines the instant, when a master station may access the medium. Controlled token
passing is managed by each station knowing its predecessor (previous station, PS), the
station from which it receives the token. Furthermore, each station knows its successor (next
station, NS), that is, the station to which the token is transmitted, and its own address (This
station, TS). Each master station determines the PS and NS addresses after the initialization
of the operating parameters for the first time and then later dynamically according to the
algorithm described in 5.3.2.4.

The Master-Slave principle is characterized by the following features:

Communication is always initiated by a master station which has the permission for medium
access, the token. slave stations (passive stations) act neutrally in respect to medium access,
that is, they do not transmit independently but only on request. If the logical ring consists of
only one Master and several slave stations then it is a pure Master-Slave system.

The following error conditions, exceptions and operational states in the system are dealt with:

— multiple tokens,

— lost token,

— error in token passing,

— duplicate station addresses,

— stations with faulty transmitter or receiver,

— adding and removing stations during operation,

— any combinations of master and slave stations.
5.3 Transmission modes and DL-entity
5.3.1 Overview

The exchange of messages takes place confirmed or unconfirmed. A confirmed message
exchange consists of a master station's send/request DLPDU and the associated
acknowledgement or response DLPDU of a Master or a slave station. User data may be
transmitted in the send/request DLPDU as well as in the response DLPDU. The
acknowledgement DLPDU does not contain any user data (for DLPDU formats see clause 7).

An unconfirmed message exchange takes place only in case of token transmission and in
case of the transmission of data without acknowledgement (for example, necessary for
broadcast messages). In both modes of operation, there is no acknowledgement. In broadcast
messages a master station (initiator) addresses all other stations at the same time by means
of a global address (highest station address, all address bits are binary "1").

All stations except the respective token holder (initiator) shall in general monitor all requests.
The stations acknowledge or respond only when they are addressed. The acknowledgement
or response shall arrive within a predefined time, the slot time, otherwise the initiator repeats,
depending on the predefined retry limit, the request if it is not a "first request" (see 6.4, FCB).
A new request or a token shall not be issued by the initiator before the expiration of a waiting
period after receiving an acknowledge or response, the idle time (see 5.5).

If the responder does not acknowledge or respond after a predefined number of retries (see
Table 5), it is marked as "non-operational". If a responder is "non-operational", a later
unsuccessful request will not be repeated.

61158-4-3 © IEC:2007(E) - 27 -

The modes of transmission operation define the sequence of the message transfer periods.
Three modes are distinguished

1) Token handling.

2) Send operation.

3) Send and request operation.

5.3.2 Token procedures
5.3.2.1 Token circulation

The token is passed from master station to master station in ascending numerical order of
station addresses by means of the token DLPDU (see 7.4). To close the logical token ring, the
station with the highest address passes the token to the station with the lowest address, see
Figure 2.

5.3.2.2 Token reception

If a master station (TS) receives a token DLPDU addressed to itself from a station which is
registered as Previous station (PS) in its list of master stations (LMS), it owns the token and
may execute message transfer periods. The LMS is generated in a master station in the
"Listen_Token" state (see 8.2.4) after power on and is updated and corrected, if necessary,
later on upon each receipt of a token DLPDU.

If the token transmitter is not the registered PS, the addressee assumes an error and shall not
accept the token. Only a subsequent retry of the same PS is accepted and results in the token
receipt, because the token receiver shall assume now that the logical ring has changed. It
replaces the originally recorded PS in its LMS by the new one.

Figure 2 shows the logical token-passing ring.

Logical token ring of Master stations with Token Passing direction

TS<NS<PS PS<TS<NS PS<TS<NS NS<PS<TS

> 2 |—] 4 » 6 > 9

Y

Master stations

Slave stations

where
TS is this station (address);
PS is previous station (address);
NS is next station (address);
master stations are 2, 4, 6 and 9 (addresses as an example);

slave stations are 1, 3, 5, 7 and 8 (addresses as an example).

Figure 2 — Logical token-passing ring

- 28 - 61158-4-3 © IEC:2007(E)

5.3.2.3 Token transmission

After the master station has finished its message transfer periods - contingent maintenance of
the GAP station list (GAPL, see 5.3.2.4) included - it passes the token to its successor (NS)
by transmitting the token DLPDU. The functionality of its transceiver is checked by
simultaneous monitoring (see 8.2.11, "Pass_Token" state).

If, after transmitting the token DLPDU and after expiration of the synchronization time within
the slot time (see 5.5), the token transmitter receives a valid DLPDU, that is, a DLPDU header
without any errors, it assumes that its NS owns the token and executes message transfer
periods. If the token transmitter receives an invalid DLPDU, it assumes that another master
station is transmitting. In both cases it ceases monitoring the token passing and retires, that
is, it enters the "Active_Idle" state (see 8.2.5).

If the token transmitter does not recognize any bus activity within the slot time, it repeats the
token DLPDU and waits another slot time. It retires thereafter, if it recognizes bus activity
within the second slot time. Otherwise, it repeats the token DLPDU to its NS for a last time. If,
after this second retry, it recognizes bus activity within the slot time, it retires.

If, after the second retry, there is no bus activity, the token transmitter tries to pass the token
to the next but one master station (NS of NS). It continues repeating this procedure until it has
found a successor from its LMS. If it does not succeed, the token transmitter assumes that it
is the only one left in the logical token ring and transmits the token to itself. If it finds a NS
again in a later station registration, it tries again to pass the token.

5.3.2.4 Addition and removal of stations

Master and slave stations may be connected to or disconnected from the transmission
medium at any moment. Each master station in the logical token ring is responsible for the
addition of new stations in the range from the own station address (TS) to the next station
(NS), excluding TS and NS. This address range is called GAP and is represented in the GAP
List (GAPL), except the address range between Highest Station Address (HSA: 2 to 126) and
127, which does not belong to the GAP.

Each master station in the logical token ring examines its address range (all GAP addresses)
after expiration of the GAP update timer (see 5.5.3.11) for changes concerning Master and
slave stations. This is accomplished by examining one address per token receipt, using the
"Request DL Status with Reply" request DLPDU (see Table 3, b7=1, Code-No 9: Format 7.1.1
a)and 7.1.2 a)).

Upon receiving the token, GAP maintenance starts immediately after all queued message
transfer periods have been executed, if there is still transmission time available (see 5.3.2.6).
Otherwise, GAP maintenance starts upon the next or the consecutive token receipts after the
high priority message transfer periods and other low priority services invoked before the
previous GAP maintenance have been performed (see 5.3.2.7). In realizations, care is
necessary to ensure that GAP maintenance and low priority message transfer periods do not
block each other.

GAP addresses are examined in ascending order, except the GAP which surpasses the HSA.
For example, if the HSA and address 0 are not used by a master station, the master station
with the highest address examines address 0 after checking the HSA.

If a station acknowledges positively with the DL status "Master station not ready to enter
logical token ring" or "Slave station" (see Table 3, b7=0, Code-No 0, no SC, and Figure 20), it
is accordingly marked in the GAPL and the next address is checked. If a station answers with
the state "Master station ready to enter logical token ring", the token holder changes its GAPL
and LMS and passes the token to the new NS. This station, which has newly been admitted to
the logical token ring, has already built up its LMS, when it was in the "Listen_Token" state,
so that it is able to determine its GAP range and its NS.

61158-4-3 © IEC:2007(E) -29 -

If a station answers with the DL status "Master station in logical token ring", then the token
holder does not change its GAP and passes the token to the NS given in the LMS. Thus the
skipped master station may retire from the bus in case of permanent not receiving the token.
In this case the master station shall enter the "Listen_Token" state. In this state it generates a
new LMS and remains in this state until it is addressed once more by a "Request DL Status
with Reply" transmitted by its predecessor (PS).

Stations which were registered in the GAPL and which do not respond to a "Request DL
Status with Reply" are removed from the GAPL and are recorded as unused station
addresses.

Due to performance requirements repeated requests of "Request DL Status with Reply" are
not desired.

5.3.2.5 (Re)initialization of the logical token ring

Initialization is primarily a special case of updating the LMS and GAPL. If after power on
(PON) of a master station a time-out is encountered in the "Listen_Token" state (no bus
activity within Time-out Time TTQ (see 5.5)), then the master station shall claim the token

("Claim_Token" state) and start initialization.

When the entire fieldbus system is started, the master station with the lowest station address
starts initialization. By transmitting two token DLPDUs addressed to itself (DA = SA = TS) it
informs any other master stations (entering a NS into their LMS) that it is now the only station
in the logical token ring. Then it transmits a "Request DL Status with Reply" DLPDU to each
station in an incrementing address sequence, in order to register other stations. If a station
responds with "Master station not ready to enter logical token ring" or with "Slave station" it is
entered in the GAPL. The first master station, which answers with "Master station ready to
enter logical token ring", is registered as NS in the LMS and thus closes the GAP range of the
token holder. Then the token holder passes the token to its NS.

Reinitialization becomes necessary after loss of the token, which causes a time-out (no bus
activity). In this case, an entire bus initialization sequence is not required, because LMS and
GAPL already exist in the master stations. The time-out expires first in the master station with
the lowest address. It takes the token and starts executing regular message transfer periods
or passes the token to its NS.

5.3.2.6 Token rotation time

After receiving a token, the DL-entity may carry out high priority and low priority message
transfer periods according to the token rotation time. The token rotation time is measured by
using the token-rotation-timer. At the beginning the token-rotation-timer is loaded with the
target rotation time TTR and decremented with each bit time. The token-rotation-timer stops if

the value zero is reached.

The token rotation time shall be measured according to the following rules:

— immediately after token reception the master station shall read the current value of the
token-rotation-timer (token holding time TTH) to calculate the real rotation time TRR

(difference between the target rotation time and the current value of token-rotation-timer)
and shall start the token-rotation-timer with the value target rotation time (TTR)

— the TRR represents always the token rotation time of the last token rotation (from the
viewpoint of this station)

A system's minimum target rotation time depends on the number of master stations and thus
on the token transfer period (TTp) and the duration of high priority message transfer periods

(high TmP). The predefined target rotation time TTR shall also contain sufficient time for low
priority message transfer periods and a safety margin for potential retries.

- 30 - 61158-4-3 © IEC:2007(E)

In order to keep within the system reaction time required by the field of application, the target
rotation time TTR of the token in the logical ring shall be specified.

The system reaction time is defined as the maximum time interval (worst case) between two
consecutive high priority message transfer periods of a master station, measured at the DLS-
user interface at maximum bus load.

In order to achieve a target rotation time as short as possible, it is recommended for the DLS-
user (see IEC 61158-5-3), to declare only important data as high priority message transfer
periods and to restrict their length (for example, < 32 octets for the DLSDU, see 6.6).

If the transfer periods defined in 5.6 (equations (52) and (59) as well as (53) and (60)) are
included and possible retries are taken into consideration, the operating parameter "target
rotation time TTR" (see 5.6 and Table 5), which is necessary for initialization (min TTR), is

calculated for the DLS-user as follows:

min TTR=naxTTp+(na+ 1) xhighTpmp + kxlow Ti(yp + mtx TRMP (11)
where
na is the number of master stations;
k is the estimated number of low priority message transfer periods per token
rotation;

TTP is the token transfer period (see 5.6.1.1 and 5.6.2.1);

TMP is the message transfer period, depending on DLPDU length (see 5.6.1.2 and
5.6.2.2);

mt is the numbers of message retry transfer periods per token rotation;
TRMP is the message retry transfer period.

The first term contains one token transfer period per master station. The second term
contains one high priority message transfer period for N+7 master stations. The third term
contains the estimated number of low priority message transfer periods per token rotation.
The fourth term serves as a safety margin for potential retries. The maximum reaction time for
high priority message transfer periods is guaranteed for all bus loads.

5.3.2.7 Message priorities

In the parameter service_class of the DL services the DLS-user (application layer) can choose
between two priorities: low and high. The priority is passed to the DLE with the service
request.

After token reception, each master station may always execute one high priority message
transfer period including retries in the case of an error independently of the token holding time

TTH-

Further high or low priority message transfer periods may be executed according to the
following rules if TTH is still available (see 5.5.5).

— High or low priority messages may be carried out if the calculated real rotation time (TRR)

is less than the current value of the token-rotation-timer before the instant of execution of
message sending.

— Once a high or low priority message transfer period is started, it is always completed,
including any required retry (retries), even if the token-rotation-timer is less than or equal
to the value of TRR during the execution.

61158-4-3 © IEC:2007(E) -31 -

— |If there is no TTH available (the TRR is greater than the current value of the token-

rotation-timer before the instant of execution of message sending) then the token shall be
passed to NS immediately.

NOTE 1 The prolongation of the token holding time TTH automatically results in a shortening of transmission time
for message transfer periods at the next token receipt.

NOTE 2 For further explanation refer to Annex A and Annex C.

5.3.3 Send or send/request mode

In the send or send/request mode, single message transfer periods are conducted
sporadically. The master station's DL-entity initiates this mode due to a local user's request

upon receipt of the token. If there are several requests, this mode of operation may be
continued until the maximum allowed token holding time expires.

5.4 Service assumed from the PhL
5.4.1 Asynchronous transmission
5.4.1.1 PhS transmission and reception services

The PhL data service includes two service primitives. A request primitive is used to request a
service by the DL-entity; an indication primitive is used to indicate a reception to the
DL-entity. The names of the respective primitives are as follows:

Ph-ASYN-DATA request
Ph-AsYN-DATA indication
The temporal relationship of the primitives is shown in Figure 3.

Station Station

Ph-ASYN-DATA.request

e Ph-ASYN-DATA.indication

~< -
»

Figure 3 — PhL data service for asynchronous transmission

5.4.1.2 Detailed specification of the service and message exchange

This subclause describes in detail the service primitives and the related parameters in an
abstract way. The parameters contain information needed by the PhL-entity.

Parameters of the primitives:
Ph-AsYN-DATA request (DL_symbol)
The parameter DL_symbol shall have one of the following values:

a) ZERO corresponds to a binary "0",
b) ONE corresponds to a binary "1",
c) SILENCE disables the transmitter when no valid DL symbol is to be transmitted.

The Ph-AsYN-DATA request primitive is passed from the DL-entity to the PhL-entity to request
that the given symbol shall be sent to the fieldbus medium.

-32 - 61158-4-3 © IEC:2007(E)

The reception of this primitive shall cause the PhL-entity to attempt encoding and
transmission of the DL-symbol.

The Ph-ASYN-DATA request is a primitive, which shall only be generated once per DL-symbol
period (tg|T). The PhL-entity may confirm this primitive with a locally defined confirmation

primitive.
Ph-AsYN-DATA indication (DL_symbol)

The parameter DL_symbol shall have one of the following values:

— ZERO corresponds to a binary "0",
— ONE corresponds to a binary "1".

The Ph-ASYN-DATA indication primitive is passed from the PhL-entity to the DL-entity to
indicate that a DL-symbol was received from the fieldbus medium.

The Ph-ASYN-DATA indication is a primitive, which shall only be generated once per received
DL-symbol period (iB|T).

5.4.2 Synchronous transmission
5.4.2.1 General

This subclause defines the assumed physical service (PhS) primitives and their constraints on
use by the DLE.

NOTE Proper layering requires that an (N+1)-layer entity not be concerned with, and that an (N)-service interface
not overly constrain, the means by which an (N)-layer provides its (N)-services. Thus the Ph-service interface does
not require DLEs to be aware of internal details of the PhE (for example, preamble, postamble and DLPDU
delimiter signal patterns, number of bits per baud), and should not prevent the PhE from using appropriate evolving
technologies.

5.4.2.2 Assumed primitives of the PhS

The granularity of transmission in the fieldbus protocol is one octet. This is the granularity of
PhS-user data and timing information exchanged at the PhL — DLL interface.

5.4.2.2.1 PhS characteristics reporting service

The PhS is assumed to provide the following service primitive to report essential PhS
characteristics used in DLL transmission, reception, and scheduling activities:

Ph-CHARACTERISTICS indication (minimum-data-rate, framing-overhead)
where

minimum-data-rate — specifies the effective minimum rate of data conveyance in bits per
second, including any timing tolerances, of any PhE on the local link.

NOTE 1 A PhE with a nominal data rate of 1 Mbit/s + 0,01 % would specify a minimum data rate of
0,9999 Mbit/s.

framing-overhead — specifies the maximum number of bit periods, where

period = 1/data rate,
used in any transmission for PhPDUs which do not directly convey data (for example,
PhPDUs conveying preamble, DLPDU delimiters, postamble, inter-DLPDU *“silence”, and
SO on).

61158-4-3 © IEC:2007(E) -33 -

NOTE 2 |If the framing overhead is F and two DL message lengths are Lq and L2, then the time to send two
immediately consecutive messages of lengths L1 and L2 will be at least as great as the time required to send
one message of length L4 + F + L2.

If this framing-overhead is more than the DLEs configured per-DLPDU-PhL-overhead,
V(PhLO), then the DLE shall report this discrepancy to DL-management and shall not
issue Ph-DATA requests while the discrepancy exists.

NOTE 3 This restriction prohibits DLE transmission while this discrepancy exists. The DLEs local station
management may remedy this discrepancy by reconfiguring V(PhLO) to a greater value.

5.4.2.2.2 PhS transmission and reception services

The PhS is assumed to provide the following service primitives for transmission and
reception:

Ph-DATA request (class, data);
Ph-DATA indication (class, data);
Ph-DATA confirm (status)

where

class — specifies the Ph-interface-control-information (PhICl) component of the
Ph-interface-data-unit (PhIDU). For a Ph-DATA request, its possible values are

START-OF-ACTIVITY — transmission of the PhPDUs which precede Ph-user data should
commence;

DATA — the single-octet value of the associated data parameter should be transmitted
as part of a continuous correctly-formed transmission;

END-OF-DATA-AND-ACTIVITY — the PhPDUs which terminate Ph-user data should be
transmitted after the last preceding octet of Ph-user data, culminating in the cessation
of active transmission;

For a Ph-DATA indication, its possible values are:

START-OF-ACTIVITY — reception of an apparent transmission from one or more PhEs
has commenced;

DATA — the associated data parameter was received as part of a continuous correctly-
formed reception;

END-OF-DATA — the ongoing continuous correctly formed reception of Ph-user data has
concluded with correct reception of PhPDUs implying END-OF-DATA,;

END-OF-ACTIVITY — the ongoing reception (of an apparent transmission from one or
more PhEs) has concluded, with no further evidence of PhE transmission;

END-OF-DATA-AND-ACTIVITY — simultaneous occurrence of END-OF-DATA and END-OF-
ACTIVITY;

data — specifies the Ph-interface-data (PhID) component of the PhIDU. It consists of one
octet of Ph-user data to be transmitted (Ph-DATA request) or which was received
successfully (Ph-DATA indication).

- 34 - 61158-4-3 © IEC:2007(E)

status — specifies either success or the locally detected reason for inferring failure.

The Ph-DATA confirm primitive provides the critical physical timing feedback necessary to
inhibit the DLE from starting a second transmission before the first is complete. The final
Ph-DATA confirm of a transmission shall not be issued until the PhE has completed the current
transmission.

5.4.2.3 Notification of PhS characteristics

The PhE has the responsibility for notifying the DLE of those characteristics of the PhS which
are relevant to DLE operation. This notification is accomplished by the PhE by issuing a
single Ph-CHARACTERISTICS indication primitive at each of the PhEs PhSAPs at PhE startup.

5.4.2.4 Transmission of Ph-user data

The PhE determines the timing of all transmissions. When a DLE has a DLPDU to transmit,
and the DL-protocol gives that DLE the right to transmit, then the DLE shall send the DLPDU,
including a concatenated FCS, by making a well-formed sequence of Ph-DATA requests,
consisting of a single request specifying START-OF-ACTIVITY; followed by three to 300
consecutive requests, inclusive, specifying DATA; and concluded by a single request
specifying END-OF-DATA-AND-ACTIVITY.

The PhE signals its completion of each Ph-DATA request, and its readiness to accept a new
Ph-DATA request, with a Ph-DATA confirm primitive; the status parameter of the Ph-DATA
confirm primitive conveys the success or failure of the associated Ph-DATA request. A second
Ph-DATA request should not be issued until after the Ph-DATA confirm corresponding to the
first request has been received from the PhE.

5.4.2.5 Reception of Ph-user data

The PhE reports a received transmission with a well-formed sequence of Ph-DATA indications,
which shall consist of either

a) a single indication specifying START-OF-ACTIVITY; followed by consecutive indications
specifying DATA; followed by a single indication specifying END-OF-DATA; and concluded by
a single indication specifying END-OF-ACTIVITY, or

b) a single indication specifying START-OF-ACTIVITY; followed by consecutive indications
specifying DATA; followed by a single indication specifying END-OF-DATA-AND-ACTIVITY, or

c) a single indication specifying START-OF-ACTIVITY; optionally followed by one or more
consecutive indications specifying DATA; and concluded by a single indication specifying
END-OF-ACTIVITY.

NOTE This last sequence is indicative of an incomplete or incorrect reception. Detection of an error in the

sequence of received PhPDUs, or in the PhEs reception process, disables further Ph-DATA indications with a class

parameter specifying DATA, END-OF-DATA, or END-OF-DATA-AND-ACTIVITY until after both the end of the current period

of activity and the start of a subsequent period of activity have been reported by Ph-DATA indications specifying
END-OF-ACTIVITY and START-OF-ACTIVITY, respectively.

In the first two cases, the DLE concatenates the received data and then attempts to parse it
into a DLPDU followed by a concatenated FCS. In the last case the DLE discards all reported
data and reports the event to DL-management.

5.5 Operational elements
5.5.1 Overview

The following times T are measured in bits. A time t in seconds (s) shall therefore be divided
by the bit time tg|T.

61158-4-3 © IEC:2007(E) -35-

5.5.2 Bit time tB|T

The bit time tg|T is the time, which elapses during the transmission of one bit. It is equivalent
to the reciprocal value of the data rate:

1 .
BIT = Fata rate 15 bit'] (12)

5.5.3 Asynchronous transmission

5.5.3.1 Synchronization time (TSYN)
The synchronization time TgyN is the minimum time interval during which each station shall
receive idle state (idle = binary "1") from the transmission medium before it may accept the

beginning of a send/request DLPDU or token DLPDU. The value of the synchronization time
shall be set with:

TsyYN = 33 bit (13)

5.5.3.2 Synchronization interval time (TSYN])

The synchronization interval time TgyN| is the maximum allowed time interval between two
consecutive synchronization times (TSyN), in order to detect “permanent transmitters”. The
value of the synchronization interval time shall be set with:

TSYNI = 2 x (2 x (33 bit + 255 x 11 bit)) + 33 bit = 11 385 bit (14)

L——-TSYN
UART character

Maximum length of the DLPDU

TsyN

Number of DLPDUs

Number of message transfer periods

This value regards two complete message transfer periods, each of which consists of two
DLPDUs of maximum length and the related synchronization times. A transmission
disturbance is permitted in one of those synchronization times.

5.5.3.3 Station delay time (TSpx)

The station delay time Tgpyx is the period of time which may elapse between the transmission
or receipt of a DLPDUs last bit until the transmission or receipt of a following DLPDUs first bit

(with respect to the transmission medium, that is, including line receiver and transmitter). The
following three station delays are defined:
a) Station Delay of Initiator (station transmitting request or token DLPDU):
TSDI
b) Minimum Station Delay of Responders (stations which acknowledge or respond):
min TSPDR
¢) Maximum Station Delay of Responders:

max TSDR

- 36 - 61158-4-3 © IEC:2007(E)

5.5.3.4 Quiet time (TQul)

When transposing the NRZ signals into a different signal coding, the transmitter fall time after
switching off the transmitter (at the initiator) shall be taken into account if it is greater than

TSDR-

During this quiet time TQui, transmission and receipt of DLPDUs shall be disabled. This shall

also be taken into account when using self-controlled repeaters, whose switching time shall
be taken into consideration. The implementation shall ensure, that the following condition is
fulfilled:

TQul < min TSpPR (15)
In order to fulfil this condition, it may be necessary to prolong min TSpR.

5.5.3.5 Ready time (TRDY)

The ready time TRpY is the time within which a master station shall be ready to receive an

acknowledgement or response after transmitting a request. The implementation shall ensure,
that the following condition is fulfilled:

TRDY < min TSDR (16)
In order to fulfil this condition it may be necessary to prolong min TSpR.

When transposing NRZ signals into a different signal coding, the quiet time shall also be
taken into consideration when switching off the transmitter. The receiver shall not be enabled
before this time:

TQul < TRDY (17)

In order to fulfil this condition, it may be necessary to prolong TRpY and thus min TSpR
accordingly.

5.5.3.6 Safety margin (TsmM)

The following time interval is specified as safety margin Tgm:
Tsm= 2bit+ 2xTSgT + TQUI (18)

TSET is the set-up time, which expires from the occurrence of an event (for example, an
interrupt on the last bit of a sent DLPDU or when synchronization time expires) until the
necessary reaction is performed (for example, to start synchronization time or to enable the
receiver).

5.5.3.7 Idle time (T|px)

The idle time T|px is the time which expires at the initiator either after receipt of a DLPDUs

last bit (measured at the line receiver) as idle = binary "1" on the transmission medium,
until a new DLPDUs first bit is transmitted on the medium (including line transmitter) or
between transmitting the last bit of a DLPDU which is not to be acknowledged and
transmitting the first bit of the next DLPDU. The idle time shall be at least the synchronization
time plus the safety margin Tg)\ (see Figure 4, Figure 5 and Figure 6 case a)).

61158-4-3 © IEC:2007(E) - 37 -

TiIDx 2 TSYN + TSM (19)

At high data rates (see Figure 4, case b) and c) and Figure 5 case b)) the synchronization
time is very short, hence the station delays become significant and shall be taken into
consideration.

Two idle times are distinguished. After an acknowledgement, response or token DLPDU the
idle time shall be calculated as follows:

Ack./Res./Token
Responder: |————]
\\
\
\\ Tior Send/Req./Token
Initiator: I—I_ _________ >—
a) Tsyn + Tsu
or b) min Tgpr
orc) Tspi
Figure 4 — Idle time T|p1
TID1 =max ((TSYN + TsMm), (min TSPR). TSDI) (20)

Care shall be taken that the time to update the LMS is not greater than T|p4. This can be
accomplished by prolonging TSET or min TgpR. If the necessary prolongation cannot be
reached with the range of value of TSET, than the min TgpR shall be made longer.

After a send DLPDU which is not to be acknowledged (SDN or CS), the idle time shall be
calculated as shown in Figure 5 and equation 34.

SDN/CS Tio2 Send/Req./Token
Initiator: fp—————} - = = = = - — - - A
a) Tsyn *+ Tom
orb) max Tgpg

Figure 5 — Idle time T|p2 (SDN, CS)

TiD2 = max ((TSYN * TSM) , (max TSDR)) (21)

Also, after a response DLPDU (MSRD) the idle time shall be calculated as shown in Figure 6
and equation 34.

- 38 - 61158-4-3 © IEC:2007(E)

MSRD
Responder: |—|
\
A\
\ T
AN b2 Send/Req./Token
Initiator: - M

a) Tsyn + Tsm

or b) max Tgpr

Figure 6 — Idle time T|p2 (MSRD)

5.5.3.8 Transmission delay time (TTD)

The transmission delay time T1p is the maximum time, which elapses on the transmission

medium between transmitter and receiver when a DLPDU is transmitted. When computing it,
delay times of repeaters shall be considered, if necessary.

EXAMPLE for computing the transmission delay time: given a line length of 200 m without repeaters, tTp is
approximately 1 ys and thus at 500 kbit/s

TTp = (1us x 500 kbit/s) = 0,5 bit.
5.5.3.9 Slot time (TsL)

The slot time TgL is the maximum time the initiator shall wait for the complete receipt of the
first character (see 6.1.1, UART character, 1 UC = 11 bits) of the immediate
acknowledgement or response DLPDU, after transmitting the last bit of a send/request
DLPDU (including the line transmitter) (see Figure 7). Furthermore, TgL is the maximum time
the initiator waits for the token receiver's first UART character (1.UC) after transmitting a
token DLPDU (see Figure 8). Theoretically, two slot times are distinguished. After a
send/request DLPDU the slot time shall be calculated as follows:

TSL1
------------- -
Send/Req. 1.UC Tsm
Initiator: |—| | | |
. \\‘ 'I
D ‘ ll TTD
\ !
Responder: |—| ———e "ll | |
max Tgpr Ack./Res.
Figure 7 — Slot time TgL1
TsL1=2xTTp + max Tgpr + 11 bit+ Tgpm (22)

After a token DLPDU the slot time shall be calculated as follows:

61158-4-3 © IEC:2007(E) -39 -

TSLZ
————————————— .>
Token 1.UC Tsm
Initiator: | 4____, H—|
\ TSYN !
\ [}
Top II To

\
\ /

N !
Responder: |—| -_————

max Tp, Send/Req./Token

Figure 8 — Slot time Tg2
TsL2=2xTTp + maxT|p1 + 11bit+ Tgm (23)

In order to simplify the realization, only one slot time, the longer one, may be used in the
system. This does not influence the system reaction time negatively, as the slot time is a pure
monitoring time.

TsL =max (TsL1, TsL2) (24)

5.5.3.10 Time-out time (TT0Q)

The time-out time TTQ serves to monitor the Master and slave stations’ bus activity and idle
time. Monitoring shall start either immediately after PON, in the "Listen_Token" or
"Passive_ldle" state, or later after receiving the last bit of a DLPDU. It shall end after
receiving the first bit of the following DLPDU. If the phase of no bus activity times out, the bus
shall be regarded as inactive. (This is an error case, for example, due to a lost token DLPDU.)
The time-out interval shall be set to:

TTOo=6xTgL + 2xnxTsL (25)

For master stations: n = station address (0 to 126)

For slave stations: n = 130, independent of the station’s address

The first term ensures that there is sufficient difference to the maximum permissible idle time
between two DLPDUs. The second term ensures that not all master stations claim the token
at the same moment after an error has occurred.

5.5.3.11 GAP update time (TGUD)

The GAP update time TGguyp serves for initializing GAP maintenance by the master station.

After the first generation of the GAPL, update of the GAP image is cyclically initialized after
every interval Tgup- This initialization takes place at the next possible token receipt, if there

is still token holding time available after the regular DLPDU transfer periods, or during later
token holding phases. The GAP update time is a multiple of the target rotation time TTR and
shall be set to:

TeuD =G xTTR (where 1 £ G < 100) (26)

TTR is the target rotation time (see 5.3.2.6).

-40 - 61158-4-3 © IEC:2007(E)

5.5.3.12 Isochronous mode

5.5.3.12.1 Isochronous cycle time (TCT)

The isochronous cycle time TgT serves to supervise the isochronous cycle. The first cycle
starts by sending the SYNCH DLPDU after reception of the token DLPDU.

5.5.3.12.2 IsoM synchronization DLPDU time (TSYNCH)
The isochronous mode synchronization DLPDU time describes the time, which is needed to

send the SYNCH DLPDU at the start of a new IsoM cycle. The value of the IsoM
synchronization message time shall be set with:

TSYNCH = 13 x 11 bit = 143 bit (27)

| UART character

Length of the SYNCH DLPDU

5.5.3.12.3 Active spare time DLPDU time (TASM)

The active spare time DLPDU time describes the duration that is needed to send an active
spare time (ASP) DLPDU.

TAasSM = TID1 + (6 x 11 bit) (28)

| UART character

Length of the ASP DLPDU

5.5.3.12.4 Real isochronous cycle time (TRCT)

The real isochronous cycle time is the read value of the isochronous-cycle-timer.

5.5.3.12.5 Spare time (TRES)

Within the isochronous cycle the token is passed by the IsoM Master after the transmission of
all high priority messages and the number of configured low priority messages. After receiving
the next token addressed to the IsoM Master, the station read the isochronous cycle timer
(TRCT) in order to calculate the remaining time before the next SYNCH DLPDU is to be sent.

TRES =TCcT - TRCT (29)

Within the spare time, at least one active spare time DLPDU shall be sent. For further active
spare time, DLPDUs shall be valid.

TRES > TASM *+TID1 (30)

5.5.3.12.6 Passive spare time (TPSP)

The passive spare time denotes the part of isochronous cycle where the IsoM Master shows
no bus activities. It shall be less than the minimum time-out time TTQ under consideration of
possible delays in the stations and during transmission. The passive spare time is defined as
follow:

61158-4-3 © IEC:2007(E) -41 -

TPSP <6 xTsL-TsSM-2xTTD (31)

Tpsp > TID1 + TASM + max TSDR (32)

5.5.3.12.7 Time shift (TSH)

The time shift is the difference between the measured cycle time and the calculated cycle
time when the passive-spare-timer expires.

TSH=TRCT - TCT (33)
5.5.3.13 Send delay time (Tsp)
The send delay time is the time that elapses between the receiving of a DL-CS-TIME-

EVENT.request primitive at the DLE of the time master and the DLPDUs last bit of a resulting
TE DLPDU (see 7.7) transmitted by the time master.

5.5.3.14 Receive delay time (TRD)
The receive delay time is the time that elapses at a time receiver between the receiving of the

last bit of a TE DLPDU (see 7.7) and the receiving of a DLPDUs last bit of a CV DLPDU (see
7.8).

5.5.3.15 Clock synchronization interval time (Tcs|)

The clock synchronization interval time is used to monitor the synchronization sequences
within the DLE.

5.5.4 Synchronous transmission
5.5.4.1 Synchronization time (TSYN)
The synchronization time is the minimum time interval during which each station shall receive

no activity from the transmission medium before it may accept the beginning of a
send/request DLPDU or token DLPDU.

The synchronization time shall correspond to the post-transmission gap time (TpTg) that is

defined in 9.2.8 of IEC 61158-2. Its value shall be set to at least 4 bit and may be increased
by the DLMS-user up to 32 bit.

TSYN =TPTG = TQuUI (34)
TSYN = 4 to 32 bit (35)

5.5.4.2 Synchronization interval time (TSYN])

The synchronization interval time TgyN| is the maximum allowed time interval between two
consecutive synchronization times (TSyN), in order to detect "permanent transmitters".

The value of TgyN| shall be set as follows:

-42 - 61158-4-3 © IEC:2007(E)

TSYNI = 2 x (2 x (32 bit + 80 bit + 255 x 8 bit)) + 64 bit = 8672 bit (36)

L———-TSM
Octet

Maximum length of the DLPDU

PhPCI

TSYN

Number of DLPDUs

Number of DLPDU transfer periods

This value regards two complete message sequences, each of which consists of two DLPDUs
of maximum length and the associated maximum PhL Protocol Control Information (PhPCI:
Preamble, Start Delimiter, End Delimiter) and the maximum synchronization time (post-
transmission gap). A transmission disturbance is permitted in one of those synchronization
times.

5.5.4.3 Station delay time (TSpx)
The station delay time Tgpx is the period of time, which may elapse between the
transmission or receipt of a DLPDUs last octet until the transmission or receipt of a following

DLPDUs first octet (with respect to the transmission medium, that is, including line receiver
and transmitter). The following three station delays are defined:

a) Station Delay of Initiator (station transmitting request or token DLPDU)

TsDI

b) Minimum Station Delay of Responders (station that acknowledges or responds)

min TSDR

c) Maximum Station Delay of Responders

max TSDR

5.5.4.4 Quiet time (TQul)

The transmitter fall time or repeater switch time corresponds to the post-transmission gap
time (TgynN)- The following shall apply:

TqQul = TpTG = TSYN (37)
5.5.4.5 Ready time (TRDY)

The ready time TRpY is the time within which a Master station shall be ready to receive an

acknowledgement or response after transmitting a request. The implementation shall ensure,
that the following condition is fulfilled:

TRDY < min TSDR (38)

In order to fulfil this condition it may be necessary to prolong min TSpR.

61158-4-3 © IEC:2007(E) -43 -

During the quiet time Tqy), transmission and receipt of DLPDUs shall be disabled. The
implementation shall ensure, that the following condition is fulfilled:

TqQul =TpTg = TsyN < TRDY (39)

In order to fulfil this condition the min TgpR shall be increased according to equation (38) if
necessary.

5.5.4.6 Safety margin (Tsm)

The safety margin Tg)y is defined as the time interval:
TsM=2bit+2xTSET (40)

TSET is the set-up time, which expires from the occurrence of an event (for example, an

interrupt on the last octet of a sent DLPDU or on synchronization time expiration) until the
execution of the necessary reaction.

5.5.4.7 Idle time (T|px)

The idle time T|px is the time which expires at the initiator after a Ph-DATA indication primitive

until sending of a new DLPDU with Ph-DATA request primitive or after passing a Ph-DATA
request primitive with a Ph-DATA confirm primitive to transmit a DLPDU which is not to be
acknowledged until passing a new Ph-DATA request primitive for transmitting the next DLPDU.
The idle time shall be at least the synchronization time plus the safety margin Tgp\.

TiIDx 2 TSYN + TSM (41)

Two idle times are distinguished (see description of idle time in 5.5.3.7, Figure 4, Figure 5,
and Figure 6). After an acknowledgement, response or token DLPDU the idle time shall be
calculated as follows:

TID1 = max ((TSYN + TsMm), (min TSDR), TSDI) (42)

Care shall be taken that the time to update the LMS is not greater than T|p1. This can be
accomplished by prolonging TSgT or min TgpR. If the necessary prolongation cannot be
reached with the range of value of TSgT, then the min TgpR shall be made longer.

After a send DLPDU, which is not to be acknowledged (SDN, CS), the idle time shall be
calculated as follows:

TiD2 = max ((TSYN * TsMm), (max TSDR)) (43)

5.5.4.8 Transmission delay time (TTD)

The transmission delay time TTp is the maximum time, which elapses on the transmission

medium between transmitter and receiver when a DLPDU is transmitted. When computing it,
delay times of repeaters shall be considered if necessary. It shall also conform to any
restrictions placed on it in IEC 61158-2, where it is called “propagation delay”.

5.5.4.9 Slot time (TsL)

The slot time Ts| is the maximum time the initiator shall wait after passing a Ph-DATA request
primitive for transmitting a request DLPDU from the Ph-DATA confirm primitive until receiving

— 44 — 61158-4-3 © IEC:2007(E)

the first Ph-DATA indication primitive as an indication of receiving the immediate
acknowledgement or response (see Figure 9). Furthermore, TgL is the maximum time the
initiator shall wait for a Ph-DATA indication primitive after the token DLPDU as reaction to
receiving the first DLPDU octet from the token receiver. Theoretically, two slot times are
distinguished (see Figure 10). After a send/request DLPDU the following slot time shall be
calculated:

_____________ >
Send/Req. Tpret16 Tsu
Initiator: |—| H_'
\\ //
Tp ! T
\ !
\ I
Responder: |—| = _>|I_|—|
max Tgpg Ack./Res.
Figure 9 — Slot time Tg|1
TsL1=2xTTp + max TSpDR + TPRE + 16 bit + Tg (44)
After a token DLPDU the following slot time shall be calculated:
TSLZ
_____________ .>
Token +16 Tou
Initiator: |—|-.__+ e
TSVN
\\ II
Tp | Tp
A !
A II
Responder: |—| -— -
max Typ Send/Req./Token
Figure 10 — Slot time Tg| 2
TsL2=2xTTDp + max T|p1 + TPRE + 16 bit + TgMm (45)

where TprEg is Preamble period (see IEC 61158-2)

In order to simplify the realization, only the longer slot time may be used in the system. This
does not influence the system reaction time negatively, as the slot time is merely a monitoring
time.

TsL = max (TsL1, TsL2) (46)

5.5.4.10 Time-out time (TTQ)

The time-out time TTQ serves to monitor the Master and Slave stations’ bus activity and idle
time. Monitoring shall start either immediately after PON, in the "Listen_Token" or
"Passive_ldle" state, or later after the reception of a Ph-DATA indication primitive. It shall end
upon receipt of a Ph-DATA indication primitive for reception of the first octet of a following
DLPDU. If the phase of no bus activity times out, the bus shall be regarded as inactive. (This
is an error case, for example, due to a lost token DLPDU.). The time-out time shall be set to
the following value:

61158-4-3 © IEC:2007(E) — 45—
TTO=6xTgL+2xnxTsL (47)
For Master stations: n = station address (0 to 126)
For Slave stations: n = 130, independent of their station address
5.5.4.11 GAP update time (TGUD)
5.5.3.11 shall apply.

5.5.4.12 Isochronous Mode

5.5.4.12.1 Isochronous cycle time (TCT)

5.5.3.12.1 shall apply.
5.5.4.12.2 IsoM synchronization DLPDU time (TSYNCH)
The isochronous mode synchronization DLPDU time describes the time, which is needed in

order to send the SYNCH DLPDU at the start of a new IsoM cycle. The value of the IsoM
synchronization message time shall be set with:

TSYNCH = 16 bit + 16 bit +13 x 8 bit = 136 bit (48)

Octet

Length of the SYNCH DLPDU

PhPCI: Start Delimiter and End Delimiter

PhPCI: Preamble (2 octets)

5.5.4.12.3 Active spare time DLPDU time (TASM)

The active spare time DLPDU time describes the duration that is needed to send an active
spare time (ASP) DLPDU.

TASM = TPTG + 16 bit + 16 bit + (6 x 8 bit) (49)

Octet
Length of the ASP message

PhPCI: Start Delimiter and End Delimiter

PhPCI: Preamble (2 octets)

5.5.4.12.4 Real isochronous cycle time (TRCT)
0 shall apply.
5.5.4.12.5 Spare time (TRES)

5.5.3.12.5 shall apply.

- 46 - 61158-4-3 © IEC:2007(E)

5.5.4.12.6 Passive spare time (Tpsp)

The passive spare time denotes the part of isochronous cycle where the IsoM Master shows
no bus activities. It shall be less than the minimum time-out time TTQ under consideration of

possible delays in the stations and during transmission. The passive spare time is defined as
follow:

TPSP<6xTsL-TsM-2xTTD (50)
Tpsp > TiD1 + TASM + max TSPDR (51)

5.5.4.12.7 Time shift (TSH)

5.5.3.12.7 shall apply.

5.5.4.13 Send delay time (Tsp)

The send delay time is the time that elapses between a passed DL-CS-TIME-EVENT request
primitive to the DLE of the time master and the DLPDUs last octet of a resulting TE DLPDU
(see 7.7) transmitted by the time master.

5.5.4.14 Receive delay time (TRD)

The receive delay time is the time that elapses by a time receiver between the receiving of a
DLPDUs last octet of a TE DLPDU (see 7.7) and the last octet of a CV DLPDU (see 7.8).

5.5.4.15 Clock synchronization interval time (Tcs|)

Subclause 5.5.3.15 shall apply.

5.5.5 Timers and counters
5.5.5.1 Asynchronous transmission
5.5.5.1.1 Timers

In order to measure the token rotation time and to realize the supervisory times the following
timers shall be implemented:

token-rotation-timer, idle-timer, slot-timer, time-out-timer, syn-interval-timer, GAP-update-
timer, isochronous-cycle-timer, passive-spare-timer, send-delay-timer and receive-delay-
timer.

token-rotation-timer: When a Master station receives the token, this timer is loaded with the
target rotation time TTR and decremented each bit time. When the station again receives the

token, the timer value, the remaining time or token holding time TTH, is read and the timer
reloaded with TTR. The real rotation time TRR results from the difference TTR - TTH.

The token-rotation-timer can be read out at every moment, representing always the value of
the actual token rotation. Low priority message transfer periods may be processed if at the
instant of processing the real token rotation time is less than the value of the actual token
rotation.

idle-timer: This timer monitors the idle state (binary "1"), the synchronization time,
immediately on the bus line. The synchronization time preceding each request is necessary
for unambiguous receiver synchronization. The idle-timer of Slave stations and Master
stations "without token" is loaded with TgyN after the transmission or receipt of a DLPDUs

61158-4-3 © IEC:2007(E) - 47 -

last bit and then decremented each bit time. The receiver shall be enabled immediately after
the timer has expired. The timer of a Master station "with token" is loaded according to the
data transmission service with T|p1 or T|p2 (see 5.5.3). A new request or token DLPDU may

only be transmitted after expiration of the timer. When the signalling level is binary "0", the
timer is always reloaded.

slot-timer: This timer in a Master station monitors after a request or token pass whether the
receiving station responds or becomes active within the predefined time TgL, the slot time.

After transmission of a DLPDUs last bit this timer is loaded with Tg| and decremented each
bit time as soon as the receiver is enabled. If the timer expires before a DLPDUs first bit is

received, an error has occurred. Then a retry or a new message transfer period shall be
initiated.

time-out-timer: This timer monitors bus activity in Master and Slave stations. After the
transmission or receipt of a DLPDUs last bit the timer is loaded with a multiple of the slot time
(see 5.5.3) and decremented each bit time as long as no new DLPDU is received. If the timer
expires, a fatal error has occurred, which for the Master station causes a (re)initialization. The
DLMS-user of the Slave and Master station receives a time-out notification.

syn-interval-timer: Master and Slave stations use this timer to monitor the transmission
medium whether a receiver synchronizing (TSyN, idle state, idle = binary "1") occurs within
TsyNI- Each time the receiver is synchronized, the timer is loaded with TgyN]| (see 5.5.3).
From the beginning of a DLPDU (first start bit) the timer is decremented each bit time as long
as no new TgyN is detected. If the timer expires, an error has occurred on the transmission
medium, for example, stuck at "0" or permanent "0" / "1" edges. The DLMS-user is notified
accordingly.

GAP-update-timer: Only Master stations need this timer. Its expiration indicates the moment
for GAP maintenance. After a complete GAP check, which may last several token rotations
(segmented; see 5.3.2.4), the timer is loaded with a multiple (G) of the target rotation time
TTR (see 5.3.2.6).

NOTE For ease of implementation, this timer can be implemented as a counter, decremented at each token
receipt.

isochronous-cycle-timer: The timer supervises the isochronous cycle. It is loaded with value
equal to 0 at the starting point of the isochronous mode (after receiving the first token) and
increments every bit time. The timer is readable at any time. The timer is started either by
loading with the value equal to 0 at the first beginning of the isochronous cycle or after
expiration of the passive-spare-timer. In cases the timer is started too late, it is loaded with
the value of the time difference between the real isochronous cycle time of the last cycle and
the isochronous cycle time.

passive-spare- timer: This timer monitors the idle time before sending a SYNCH message. It
shall be set according to the time difference between TcT and the current value of the
isochronous-cycle-timer TRCT at the end of the last ASP message if the difference is greater
than 0. The transmission of the last bit of the last ASP message in an isochronous cycle starts
this timer. In the isochronous mode after expiration of the passive-spare-timer, a SYNCH
message shall be sent and a synch notification event shall be sent to the DLMS-user.

send-delay-timer: When the time master receives a DL-CS-TIME-EVENT request primitive
from the local DLS-user, this timer is started with the value = 2 x Tgs| and decremented each
bit time. The timer is stopped after confirmation of the transmission of the last portion of a TE
DLPDU (see 7.7). The value of send delay time is calculated as the difference between the
start value (2 x Tcs|) and the read send-delay-timer value. The calculated send delay time is
passed to the local DLS-user. In case the timer has expired, the DLS-user is notified of a
clock synchronization sequence violation.

- 48 - 61158-4-3 © IEC:2007(E)

receive-delay-timer: When the time receiver receives the DLPDUs last bit of a TE DLPDU
(see 7.7), this timer is started with the value = 2 x Tcg| and decremented each bit time. The
timer is stopped after the receiving the last bit of a CV DLPDU (see 7.8). The value of the
receive delay time is calculated as difference between the start value (2 x Tgg|) and the read

receive-delay-timer value. The calculated receive delay time is passed to the local DLS-user.
In case the timer expired a clock synchronization sequence violation is notified to the DLS-
user.

When a Master station enters the "Listen_Token" state, the idle-timer is loaded with TSYN,
the time-out-timer with TTQ, the syn-interval-timer with TsyN| and the other timers are

cleared. When a Slave station enters the "Passive_ldle" state, the time-out-timer is loaded
with TTO and the syn-interval-timer with TSYN].

5.5.5.1.2 Counters

For installation and maintenance the following pairs of counters (DL-variables) may be used:

For Master stations:

— counter for transmitted DLPDUs (DLPDU_sent_count), except for the SDN and Request
DL Status with Reply services

— counter for transmitted DLPDU retries (Retry_count)

Additional counters may be provided for each individual remote station:

— counter for transmitted DLPDUs (DLPDU_sent count_sr), except for the SDN and
Request DL Status with Reply services and for token DLPDUs

— counter for transmitted DLPDUs with no response or erroneous response (Error_count),
except for the SDN and Request DL Status with Reply services and for token DLPDUs

For Slave and Master stations:

— counter for received valid start delimiters (SD_count)
— counter for received invalid start delimiters (SD_error_count)

When a station enters the "Listen_Token" or "Passive_ldle" state, the counters are cleared
and enabled. If a counter reaches its maximum, counting of this counter as well as of the
related comparative counter is stopped. When clearing a counter the related comparative
counter is also cleared and they are enabled again. The DLMS-user may access these
counters using the Set/Read Value services.

5.5.5.2 Synchronous transmission
5.5.5.2.1 Timers

As explained in 5.5.5.1.1, the following timers shall be implemented to measure the token
rotation time and to realize the monitor timers:

Token-rotation-timer, idle-timer, slot-timer, time-out-timer, syn-interval-timer, GAP-update-
timer, isochronous-cycle-timer, passive-spare-timer, send-delay-timer and receive-delay-
timer.

token-rotation-timer: The functionality of this timer is as defined in 5.5.5.1.1.

idle-timer: This timer monitors the idle state TPTG = TSYN = TQu| on the bus line. The idle-
timer in the Master station with the token is loaded with T|p1 or T|p2 depending on the data

transmission service (see 5.5.4). The timer is decremented every bit time, when after a Ph-
DATA request primitive (PhICI specifying END-OF-DATA-AND-ACTIVITY) either the Ph-DATA

61158-4-3 © IEC:2007(E) -49 -

confirm primitive at the transmitter or the Ph-DATA indication primitive (PhICI specifying either
END-OF-ACTIVITY or END-OF-DATA-AND-ACTIVITY) at the receiver is transferred. A new request
or a new token DLPDU may be transmitted only after expiration of the timer.

slot-timer: After a request from or a token transfer by a Master station, this timer of the
Master station monitors whether the receiving station responds or becomes active within the
defined slot time Tg. The timer is initialized with Tg| and is decremented every bit time after
each transmission of a DLPDU. This DLPDU transmission is indicated by a Ph-DATA confirm
primitive after transfer of a Ph-DATA request primitive (PhICI specifying END-OF-DATA-AND-
ACTIVITY). If the timer expires before a DLPDU has been received, as indicated by a Ph-DATA
indication primitive (PhICI specifying START-OF-ACTIVITY), an error has occurred. As a result of
that, a retry or a new message transfer period is initiated.

time-out-timer: This timer monitors bus activity in Master and Slave stations. After transfer of
the last Ph-DATA request primitive with PhICI specifying END-OF-DATA-AND-ACTIVITY and return
of the corresponding Ph-DATA confirm primitive, or after receiving a Ph-DATA indication
primitive with PhICI specifying either END-OF-ACTIVITY or END-OF-DATA-AND-ACTIVITY, the timer
is loaded with a multiple of the slot time (see 5.5.4) and is decremented every bit time as long
as no Ph-DATA indication primitive with PhICI specifying START-OF-ACTIVITY has been
received. If the timer expires, a fatal error has occurred, which for the Master station causes a
(re)initialization. The DLMS-user of the Slave or Master station respectively receives a time-
out notification.

syn-interval-timer: Master and Slave stations use this timer to monitor the transmission
medium for "permanent transmitters". After every Ph-DATA indication primitive with PhICI
specifying START-OF-ACTIVITY, the timer is loaded with the value TsyN| (see 5.5.4) and
decremented every bit time, as long as no Ph-DATA indication primitive with PhICI specifying
either END-OF-ACTIVITY or END-OF-DATA-AND-ACTIVITY has been received. If the timer expires,
an error of the transmission medium has occurred. The DLMS-user receives a corresponding
notification.

GAP-update-timer: This timer operates in the same way as described in 5.5.5.1.1.
isochronous-cycle-timer: The functionality of this timer is as defined in 5.5.5.1.1.

passive-spare- timer: This timer monitors the idle time before sending a SYNCH message. It
shall be set according to the time difference between TcT and the current value of the
isochronous-cycle-timer TRCT at the end of the last ASP message if the difference is greater
than 0. The transmission of the last bit of the last ASP message in an isochronous cycle starts
this timer. In the isochronous mode after expiration of the passive-spare-timer, a SYNCH
message shall be sent and a synch notification event shall be sent to the DLMS-user.

send-delay-timer: When the time master receives a DL-CS-TIME-EVENT request primitive
from the local DLS-user, this timer is started with the value = 2 x Tgsg| and decremented each
bit time. The timer is stopped after confirmation of the transmission of the last portion of a TE
DLPDU (see 7.7). The value of send delay time is calculated as the difference between the
start value (2 x Tcs|) and the read send-delay-timer value. The calculated send delay time is
passed to the local DLS-user. In case the timer has expired, the DLS-user is notified of a
clock synchronization sequence violation.

receive-delay-timer: When the time receiver receives the DLPDUs last bit of a TE DLPDU
(see 7.7) indicated by a Ph-DATA indication primitive (PhICI specifying either END-OF-ACTIVITY
or END-OF-DATA-AND-ACTIVITY) has been received, this timer is started with the value =
2 x Tcs| and decremented each bit time. The timer is stopped after the receiving of the
DLPDUs last bit of a CV DLPDU (see 7.8) indicated by a Ph-DATA indication primitive (PhICI
specifying either END-OF-ACTIVITY or END-OF-DATA-AND-ACTIVITY) has been received. The
value of the receive delay time is calculated as difference between the start value (2 x Tcs))

and the read receive-delay-timer value. The calculated receive delay time is passed to the

- 50 - 61158-4-3 © IEC:2007(E)

local DLS-user. In case the timer expired a clock synchronization sequence violation is
notified to the DLS-user.

5.5.5.2.2 Counters

The specifications given in 5.5.5.1 shall apply for the optional counters.

5.6 Cycle and system reaction times
5.6.1 Asynchronous transmission
5.6.1.1 Token transfer period

The base load in a system with several Master stations, that is, the busload caused by
medium access control (token DLPDUs) and not by regular message transfer periods, is
determined by the token period TP. The total base load per token rotation results from na
(number of Master stations) token cycles. The transfer period TTp is composed of the token

DLPDU time TTF, the transmission delay time TTp and the idle time T|p1. T|D1 results from
the station delay time Tgp| or the synchronization time TgyN respectively. TTp is measured
in bits (see Figure 11).

Master
Stationk [Token k |m====== 1
Tre T H
T|D1:
Mas_ter :
Station k +1 [Token k +1 —
(or Send/Req.) :
@ Em O s '
Token transfer
period time T;p
Figure 11 — Token transfer period
TTP=TTF +TTD + TID1 (52)

The token DLPDU time TTF is determined by the number of UART characters, UC, in the

token DLPDU. A UART character always consists of 11 bits (see 6.1.1) and hence the token
DLPDU comprises altogether 33 bits. The transmission delay time TTp depends on the line

length (about 5 ns/m without repeater) and is mostly substantially less than the other times.
The idle time T|p1, which elapses between the token DLPDUs, contains the station delay time

Tsp| of the token receiver on the one hand, on the other hand the synchronization time TsyN
+ TsMm shall be used, if this sum is larger than Tgp| (see 5.5.3). This mainly occurs at low
data rates (< 100 kbit/s).

5.6.1.2 Message transfer period

A message transfer period MP consists of the send/request DLPDU and the acknowledgement
or response DLPDU. The transfer period is composed of the DLPDU transmission times, the
transmission delay times and the station delay times.

The station delay time TSpR elapses between request and acknowledgement or response.
This time is needed for decoding the request and assembling the acknowledgement or
response DLPDU. It depends on the protocol implementation in the station and is mostly
substantially greater than the transmission delay time TTp. The idle time T|p, which elapses
between acknowledgement or response and new request, contains also the station delay time
(see 5.5.3). However, TSyN + TsMm shall be used, if this sum is greater than Tgp].

61158-4-3 © IEC:2007(E) -51 -

Figure 12 shows the Message transfer periods.

Master
Station Send/Req. == —=ap Send/Req.

1
Tsr T ! i (or Token)
TSDR; i TID
Master/Slave '-------I
Station
TA/R TTD
Message transfer period time Ty;p
L =
Figure 12 — Message transfer period
TMP=TS/R+TSDR +*+ TA/R*+ TID +2X TTD (53)

If the initiator does not receive a valid response DLPDU, caused by disturbances at a station
or at the medium, the initiator will repeat the send/request DLPDU depending on its retry limit
and the state of the addressed station. For this retry message transfer period (RMP) another
transfer period TRMP applies. TRMP is composed of the send/request DLPDU transmission

time and the slot time.
TRMP =Ts/R + TSL (54)

At data rates < 100 kbit/s decoding and evaluation of DLPDUs may partially keep pace with
their reception. Station delay times become considerably shorter then.

The DLPDU transmission times (Ts/R , TA/R) are determined by the number of UART
characters (UC). Thus, they are calculated as follows:

Tg/R = a x 11 bit, where “a” is the number of UC in a send/request DLPDU

TA/R = b x 11 bit, where “b” is the number of UC in an ack/response DLPDU

EXAMPLE a = 6, for the request DLPDU: Tg/R = 66 bit; b = 59, for the response DLPDU:Tp/R = 649 bit (50 octet
DATA_UNIT)

5.6.1.3 System reaction times
The message rate Rgys in the system equals the possible number of message transfer
periods per second:

Rsys = 1/tMp; tMP = TMP X tBIT (59)

The maximum system reaction time TSR in a system with one Master station and n Slave

stations (Master-Slave system) is calculated from the message transfer period and the
number of Slave stations. If message retries are allowed, TSR is calculated as follows:

TSR=npxTMpP + mp x TRMP (56)
where
np is the number of Slave stations

mp is the number of message retry transfer periods.

-52 - 61158-4-3 © IEC:2007(E)

TRMP is the message retry transfer period

The maximum system reaction time in a system with several Master stations and Slave
stations equals the target rotation time:

TSR=TTR (see 5.3.2.6) (57)

5.6.1.4 Isochronous cycle time

The isochronous cycle time starts with the transmission of the SYNCH DLPDU by the IsoM
Master. The IsoM Master transmits all high priority messages and the configured number of
low priority messages. To permit a multi-master environment the token is passed to the next
Master station thus leaving other Master stations the necessary time to perform their actions.

N
TCT = TSYNCH + NxTTp + Y P + TRES (58)

i=1

where
N is the number of master stations within token ring

Pj = DLPDU time by master station | (includes isochronous master’s cyclic DLPDUs).

The positive difference between the real cycle time (TRCT) and the calculated cycle time
(TcT) represents the spare time TRES. Depending on the amount of time available, a number

of active spare time messages (ASM) are sent. At least one ASM message shall be sent. After
each sending of the ASM message, the spare time shall be calculated. The transmission of
the last ASM is succeeded by the start of the passive-spare-timer if the difference between
the real cycle time (TRCT) and the calculated cycle time (TCT) is greater than zero. The

sending of a new SYNCH DLPDU starts after expiration of the passive-spare-timer. If the
difference between the real cycle time (TRCT) and the calculated cycle time (TcT) is less

than or equal to zero then the sending of a new SYNCH DLPDU starts immediately. The
transmission of a new SYNCH DLPDU marks the beginning of the next cycle. The start of the
next cycle is notified to the DLMS-user with a synch notification.

In parallel, the value of isochronous-cycle-timer is read and compared with the calculated
cycle time. If the result is zero or within the allowed time shift (maxTsH) no message is sent

to the DLMS-user. If the result is not in the range of the allowed time shift a Synch_Delay
event with the value of the difference between real and calculated cycle time is sent to the
DLMS-user.

5.6.2 Synchronous transmission
5.6.2.1 Token transfer period
Similar to asynchronous transmission, the following shall apply for the token transfer period
TTP:
TTP=TTF +TTD (59)

Due to the DLPDU character (see 6.1.2) and the changed DLPDU format (see 7.4.2), the
token DLPDU time TTF is 80 bit with a preamble of 16 bit and a post-transmission gap time of

8 bit.
NOTE Only the transmission speed of 31,25 kbit/s may be selected.
5.6.2.2 Message transfer period

The following shall apply for the message transfer period Tpmp :

61158-4-3 © IEC:2007(E) -53 -

TMP=Ts/R+TSDR *+*TA/IR+ TPTG +2X TTD (60)

The specifications for the message transfer period stipulated in 5.6.1.2 shall apply except for
the following cases:

The PDU transmission times (Tg/R, TA/R) are determined by the number of PhL octets. Thus,
they are calculated as follows:

Ts/R = a, where “a” is the number of octets in a request DLPDU (< 255)

TA/R = b, where “b” is the number of octets in an ack/response DLPDU (< 255).

EXAMPLE a = 10, for the request DLPDU: Tg/r = 80 bit (additionally to 5.6.1.2: 2 octet Preamble and 2 octet PhL
start/end delimiter); b = 63, for the response DLPDU: Ta/r = 504 bit (additionally to 5.6.1.2: 2 octet Preamble
and 2 octet PhL start/end delimiter)

5.6.2.3 System reaction times

See 5.6.1.3.

5.6.2.4 Isochronous cycle time

See 5.6.1.4.

6 General structure and encoding of DLPDUs, and related elements of
procedure

6.1 DLPDU granularity
6.1.1 Asynchronous transmission — UART character
6.1.1.1 General

Each DLPDU shall consist of a number of UART characters (UC). Each UART character is a
start-stop character for asynchronous transmission, structured as shown in Figure 13.

Figure 13 — UART character

The presentation of UART characters is based on ISO/IEC 1177 and ISO/IEC 2022.

- 54 - 61158-4-3 © IEC:2007(E)

6.1.1.2 Transmission rule

Each UART character shall consist of 11 bits: a start bit (ST) which shall be always binary "0",
8 information bits (I) which may be binary "0" or binary "1", an even parity bit (P) which may
be binary "0" or binary "1" and a stop bit (SP) which shall be always binary "1".

6.1.1.3 Bit synchronizing

The receiver's bit synchronizing shall always start with the falling edge of the start bit, that is,
at the transition from binary "1" to binary "0". The start bit and all consecutive bits shall be
scanned in the middle of the bit time. The start bit shall be binary "0" in the middle of the bit,
otherwise the synchronizing shall be regarded as failed and shall be stopped. The
synchronizing of the UART character ends with the stop bit being binary "1". If a binary "0" bit
is encountered instead of the stop bit, a synchronizing error or UART character error shall be
assumed and reported and the next leading edge of a start bit shall be waited for.

A maximum deviation of + 0,3 % of the nominal data rate (bit-period) for transmission and
receipt shall not be exceeded for data rates of less than 1 500 kbit/s. For data rates of 1500
kbit/s and higher a maximum deviation of + 0,03 % of the nominal data rate (bit-period) shall
not be exceeded.

6.1.2 Synchronous transmission

Each octet of the DLPDU shall be structured as shown in Figure 14 for synchronous
transmission.

Figure 14 — Octet structure

6.2 Length octet (LE, LEr)

The two length octets of identical value in the DLPDU header of the format for variable data
length shall contain the number of information octets in the DLPDU body. These comprise:
DA, SA, FC and the DATA_UNIT. The value shall cover the range from 4 to 249, so that a
maximum of 246 octets may be transmitted in a DLPDUs DATA_UNIT (see 6.6). A value <4 is
not permitted, as a DLPDU contains at least DA, SA, FC and one DATA octet. The longest
DLPDU may contain a total of 255 octets. Figure 15 illustrates the Length octet coding.

b8 b1

2| LT T [I

<
<

L=41o0249

Figure 15 — Length octet coding

61158-4-3 © IEC:2007(E) - 55—

6.3 Address octet

6.3.1 Destination and source station address (DA and SA)

The two address octets in the DLPDU header (request, acknowledgement and response
DLPDUs) shall contain the destination (DA) and source (SA) station address. The short

acknowledgement DLPDU does not contain these two address octets. Figure 16 illustrates the
Address octet coding.

b8 b1

etz | | [[| [=

Address

DA =0to 127, SA=0to 126

Figure 16 — Address octet coding

Address 127 (b1 to b7 = 1) is reserved as global address for broadcast and multicast
messages (DLPDU to all stations or a group of stations selected by means of a DL-service-
access-point; it may only occur in SDN and CS, and the response DLPDU of MSRD).

Thus, 127 station addresses (0 to 126) are available for Slave and Master stations, of which
preferably no more than 32 may be occupied by Master stations. For non time-critical
applications, there may be up to 127 Master stations. As at least one Master station is
required, a maximum of 126 addresses for Slave stations is allowed.

Except for MSRD, the send/request DLPDUs address octets shall be sent back mirrored in the
acknowledgement or response DLPDU. That is, SA of the acknowledgement or response
DLPDU shall contain the destination station address and DA shall contain the source station
address of the send/request DLPDU. For MSRD the DA of the response DLPDU shall contain
the address 127 and SA of the response DLPDU shall contain the destination station address
of the send/request DLPDU.

6.3.2 Address extension (EXT)

Address extensions apply only to DLPDUs with DATA_UNIT. The EXT bit (extension) shall
indicate a destination and/or source address extension (DAE, SAE) (see Figure 17), which
shall immediately follows the FC octet in the DATA_UNIT. It may be distinguished between
access address (DL-service-access-point, DLSAP, see 6.3.4) and region/DL-segment
address. Both address types may also occur simultaneously, as each address extension
contains an EXT bit again (see bit b8 in Figure 18).

The address extensions of the send/request DLPDU shall be sent back mirrored in the
response DLPDU.

- 56 - 61158-4-3 © IEC:2007(E)

EXT=1
EXT=0

|DA |SA |FC DAE

DATA_UNIT

A
\4

EXT=0
EXT=1

JDA |SA |FC SAE

DATA_UNIT

A
\ 4

EXT=1
EXT=1

|DA |SA |FC DAE |SAE |

DATA_UNIT

\ 4

A

where
EXT = 0: No address extension in the DATA_UNIT

EXT = 1: Address extension follows in the DATA_UNIT.
Figure 17 — DAE/SAE octet in the DLPDU

b8 b7 b6 b1

Extfypef 2| | | | |2
Address

where
b8 (EXT) denotes an additional address extension:

0: No additional address extension octet
1: One additional address extension octet follows immediately. The following order shall be followed:

First octet: region/DL-segment address with b7=1, b8=1
Second octet: DLSAP with b7=0, b8=0.

b7 denotes the type:
0: 6 bit DL-service-access-point (DLSAP): DAE =0 to 63; SAE =0 to 62

1: 6 bit region/DL-segment address to realize hierarchical systems, values are not specified in this
standard.

Figure 18 — Address extension octet

6.3.3 Address check

A receiver shall check the destination address information in a DLPDU addressed to itself
against TS according to the following rules.

61158-4-3 © IEC:2007(E) - 57 -

a) If there is no region/DL-segment address in the DLPDU existent (DA[b8=0] or DAE[b7=0]),
it shall only check the DA on equality with TS.

b) If there is a region/DL-segment address in the DLPDU existent (DAE[b7=1]), it shall check
the DAE and the DA on equality with region/DL-segment address and TS of the addressed
station.

c) If the receiver of the station, which is addressed with a region/DL-segment address, does
not contain a region/DL-segment address then the DLPDU is not addressed to this station.

6.3.4 DL-service-access-point (DLSAP)

At the DLS interface, (see IEC 61158-3-3) a data transmission service (or several thereof) is
processed via a DL-service-access-point (DLSAP). Several DLSAPs may exist at the same
time in Master and Slave stations. The related DLSAP-address shall be transmitted together
with the message, except for the DLSAP-addresses NIL and CS.

The address extensions DAE and SAE shall be used for the transmission of DLSAPs. The
source service access point index (S_SAP_index), which represents the access address of
the local user to the DL, shall be transmitted in the SAE octet. The destination service access
point index (D_SAP_index), which represents one or all access addresses of the remote user
to the DL, shall be transmitted in the DAE octet. S_SAP_index values from 0 to 62 and
D_SAP_index values from 0 to 63 may be chosen. The D_SAP_index value 63 denotes the
global access address. This D_SAP_index may only be used for the Send Data with No
Acknowledge service.

NOTE For DLPDUs with a Function = SDA_H/L or SRD_H/L (see Table 3) a D_SAP_index of 63 in the
send/request DLPDU results in a negative acknowledge (RS).

If the transmission of DLSAP addresses is omitted for reasons of DLPDU efficiency, the data
transmission services shall be processed via the default DLSAP at the initiator or the
responder or both. In these cases, all DLPDUs shall be transmitted without the related
address extension (SAE or DAE or both). At the DLS interface the default DLSAP is
mandatory and is addressed with the value NIL.

The DLSAP-address CS used for the time synchronization services Clock Value and Time
Event is omitted in the related DLPDUs for the same reason.

6.4 Control octet (FC)
6.4.1 General

The control octet in the DLPDU header shall indicate the DLPDU type, such as send/request
DLPDU and acknowledgement or response DLPDU. In addition, the control octet shall contain
the function Code No and the control information, which prevents loss and multiplication of
messages, or the station type with the DL status. Figure 19 and Figure 20 illustrate the FC
octet coding.

b8 b7 b6 b5 b4 | b3 | b2 | b1
0/1 1 FCB FCV 23 Function code No 20
where
b8 = 0/1, b7 =1: send/request DLPDU
FCB: is Frame count bit: 0 or 1, alternating
FCV: is Frame count bit valid:

0: alternating function of FCB is invalid
1: alternating function of FCB is valid
Function code No: shall be as described in Table 3.

Figure 19 — FC octet coding for send/request DLPDUs

where

— 58 —

61158-4-3 © IEC:2007(E)

b8 b7 b6 b5 b4 | b3 | b2 | b1
Station type and 3 . 0
Res 0 DL status 2 Function code No 2

DLPDU type b7 = 0: is acknowledgement or response DLPDU
b6 and b5 are station type and DL status combined

b6 b5

00
0 1
10
1 1
Res:

Slave station
Master station not ready to enter logical token ring
Master station ready to enter logical token ring

Master station in logical token ring
means reserved (the sender shall set to binary "0", the receiver does not have to interpret this bit)

Function code No:

shall be as described in Table 3.

Figure 20 — FC octet coding for acknowledgement or response DLPDUs

Table 3 shows the function code No of the control octet for both send/request DLPDUs and
acknowledgement or response DLPDUs.

61158-4-3 © IEC:2007(E)

— 590 —

Table 3 — Transmission function code

Code Function Format in s_ubclause Possi_ble for _the
described following stations
DLPDU type b8 =18& b7 =1 Initiator éi‘;eclﬁﬁzr

Clock Value 7.3.1,7.3.2 M Mand S

1...15 Reserved
DLPDU type b8 =0 & b7 =1
0 Time Event 7.1.1,71.2 M Mand S
1,2 Reserved
3 Send data with scknowledge low M Mand S
4 Send data with no acknowledge low 7.21,7.31 M Mand S
5 Send data with acknowledge high 7.2.2,7.3.2 M Mand S
6 Send data with no acknowledge high M Mand S
7 Send and request data multicast 7.21,7.3.1,7.2.2,7.3.2 M Mand S
8 Reserved
9 Request DL-status with reply 71.1,71.2 M Mand S
10, 11 Reserved
12 Send and request data low 7.1.1,7.21,7.31 M Mand S
13 Send and request data high 712,722,732 M Mand S
14 Request ident with reply 71.1,71.2 M Mand S
15 Reserved
DLPDU type b7 =0

0 Acknowledgement positive (OK) [7.11,71.279 Mand S
1 SE/}BEI(\EAQSE\(;? Error (UE) Mand S M

ACK negative
2 no resource for send data 7.1.1,71.2 Mand S M

(& no response DL data) (RR)
3 o Soriue aotiveted (RS) Mand S
4t07 Reserved M and S
T R e wanas |

ACK negative
9 no response DL/DLM data, 711 .7124 M and S M

(& send data ok) (NR)
10 (& sond data k) oH) |722. 752 Mands | W
11 Reserved M and S
12 o raeource for send data (RoL) |7-21, 731 Mand S M
13 no resource for send gata (ROH) |72:2 732 Mand 8 M
14, 15 Reserved
where M: Master, S: Slave

b4 b1

Function code No 0: 0000

I
Function code No 15: I1 111

() Value of the L/M_status parameter of the service primitives (see IEC 61 158-3-3).

a Also possible Short Acknowledgement SC = E5H; exception: if request DL-status with reply, no SC is permitted.

6.4.2

Frame count bit

The frame count bit FCB (b6) prevents the duplication of messages at the responder and the
loss at the initiator. However, "Send Data with No Acknowledge" (SDN), "Request DL Status
with Reply", "Request Ident with Reply", “Time Event” and “Clock Value” are excluded from
this.

- 60 - 61158-4-3 © IEC:2007(E)

In order to manage the security sequence, the initiator shall carry a FCB for each responder.
When an send/request DLPDU is transmitted to a responder for the first time or to a
responder currently marked as "non operational", the associated FCB shall be set
unambiguously. The initiator shall achieve this by an send/request DLPDU with FCV=0 and
FCB=1. The responder shall classify such a DLPDU as first message transfer period and store
FCB=1 together with the initiator's address (SA and optional SAE[b7=1]) (see Table 4). This
message transfer period is not repeated by the initiator.

If a responder supports the region/DL-segment addressing and the send/request DLPDU
contains a source region/DL-segment address (SAE[b7=1]), which is unequal to the own
region/DL-segment address (DAE[b7=1]), then the responder shall store the SAE[b7=1]
together with the SA.

In the following send/request DLPDUs to the same responder the initiator shall set FCV=1 and
toggle FCB with each new send/request DLPDU. The responder shall evaluate FCB when
receiving an send/request DLPDU addressed to itself with FCV=1. A FCB changed in
comparison with the same initiator's (same SA and optional same SAE[b7=1]) preceding
send/request DLPDU shall be considered as confirmation of the preceding message transfer
period's correct completion. If the send/request DLPDU originates from a different initiator
(different SA or optional different SAE[b7=1]), there shall be no evaluation of the FCB. In both
cases, the responder shall store the FCB with the source address (SA and optional
SAE[b7=1]) until it receives a new DLPDU addressed to itself.

If an acknowledgement or response DLPDU is missing or corrupted, the FCB shall not be
changed by the initiator in the retry; this indicates the faulty preceding message transfer
period. If a responder receives an send/request DLPDU with FCV=1 and the same FCB as in
the same initiator's (same SA and optional same SAE[b7=1]) immediately preceding
send/request DLPDU, a retry shall be carried out. As a result, the responder shall again
transmit the acknowledgement or response DLPDU kept in readiness.

The responder shall keep ready the preceding acknowledgement or response DLPDU for a
potential retry, until it detects a confirmation of the preceding message transfer period's
correct completion as described above, or until it receives a token DLPDU or a DLPDU with a
changed address (SA or DA or optional SAE[b7=1] or DAE[b7=1]).

For "Send Data with No Acknowledge", "Request DL Status with Reply", "Request Ident with
Reply", “Time Event” and “Clock Value”, FCV and FCB are both zero for the following DLPDU
types; the responder does not need to analyse FCB:

61158-4-3 © IEC:2007(E) -61-

Table 4 - FCB, FCV in responder

b6 b5 «- bit position
FCB FCV Condition Meaning Action
Request with no ack
Request DL-status with reply Last ack or
0 0 [DA =TS/127 Request ident with reply reolv mav be deleted
Time event Py y
Clock event
0/1 0/1 |DA#TS Request to other responder rL:pSItyarg;;Le deleted
FCBM :=1
_ . SAM := SA
1 0 [DA=TS First request last Ack or
Reply may be deleted
_ last Ack or delete Reply
DA=TS FCBM := FCB
0/1 1 | SA=SAM New request have Ack or
FCB # FCBM Reply ready for Retry
DA=TS FCBM := FCB
0/1 1 [SA=SAM Request retry repeat Ack or
FCB = FCBM Reply and keep it ready
FCBM := FCB
DA =TS o SAM := SA
0/1 1 SA # SAM New initiator have Ack or
Reply ready for Retry
last Ack or
- — | Token-DLPDU | — Reply may be deleted
NOTE FCBM is the stored FCB and SAM is the stored SA.

6.5 DLPDU content error detection
6.5.1 Asynchronous transmission — frame checksum (FCS)

The 8-bit (1 octet) frame checksum that is required for Hamming distance 4 in a DLPDU shall
always immediately precede the end delimiter. The checksum shall be structured as shown in
Figure 21.

b8 b1

I B

Figure 21 — FCS octet coding

In DLPDUs of fixed length with no data field (see 7.1.1) the checksum shall be calculated from
the two’s-complement arithmetic sum of DA, SA and FC (without start and end delimiters).

In DLPDUs of fixed length with data field (see 7.2.1) and in DLPDUs with variable data field
length (see 7.3.1) the checksum shall additionally include the DATA_UNIT.

6.5.2 Synchronous transmission —frame check sequence (FCS)

A 16-bit (2 octet) frame check sequence is required. It shall be calculated and appended to
the DLPDU as specified in Clause 5, where its Hamming distance properties are also
described.

-62 - 61158-4-3 © IEC:2007(E)

6.6 DATA_UNIT
6.6.1 General

The DATA_UNIT shall consist of the User Data (DLSDU) of the DLS/DLMS-user and
optionally of one or more address extension octets (see Figure 22). Up to 4 address extension
octets are permissible (see 6.3.1). The User Data comprises a maximum of 242 up to 246
octets depending on the number of used address extension octets.

DATA_UNIT
/ ya / ya
/ / / /
FC DAE / SAE
/l /l // //
Address
extension) User Data

Figure 22 — Data field
The following user data are defined for the Ident DLPDU:

6.6.2 Ident user data

As shown in Figure 23 the ldent user data shall contain the station's Ident_List with vendor
name (Vendor_name), fieldbusfieldbus controller type (controller_type) and hardware and
software release (HW/SW _release). It comprises a maximum of 200 octets:

/ /
LE_VN| LE_CTI LE_HRI LE_SRI Vendor_name |
7/
Ident Data
<
/L [/
. Controller_typel HW_reIeaseI SW_release ,I
/ / 7 /
>

where

LE_VN, LE_CT, LE_HR, LE_SR in each case the length of the corresponding data field in Octets (1 octet
each, dual coding, significance as in Figure 21).

Vendor_name (VN) is the name of manufacturer as an ASCII string (ISO 7 Bit Code, b8=0).
Controller_type (CT) is the hardware controller type as an ASCII string (ISO 7 Bit Code, b8=0).
HW _release (HR) is the hardware release of controller as an ASCII string (ISO 7 Bit Code, b8=0).
SW_release (SR) is the software release of controller as an ASCII string (ISO 7 Bit Code, b8=0).

Figure 23 — Ident user data

6.7 Error control procedures
6.7.1 Asynchronous transmission

Line protocol errors, for example, character framing errors, overrun errors and parity errors,
and transmission protocol errors, for example faulty start delimiters, frame check octets and
end delimiters, invalid DLPDU length, response times, etc. shall result in the following station
reactions:

61158-4-3 © IEC:2007(E) - 63 -

A send/request DLPDU or token DLPDU that has been received incorrectly by a station shall
not be processed, acknowledged or answered. The initiator shall retry the request after
expiration of the slot time. The request shall also be retried if the acknowledgement or
response was corrupted. The initiator shall complete a request only after having received a
valid response or if the retry (retries) was not (were not) successful (see Table 5). This means
that a "Send/Request" shall be kept until the responder confirms its correct receipt by an
acknowledgement or response or the retry (retries) was not (were not) successful. In the
same way, a responder shall terminate a "Request" or "Send/Request" only if a new request
with altered frame count bit is received or another station is addressed (see 6.4, FCB).

If a station does not acknowledge or respond after retry (retries), it shall be marked as "non
operational”. When processing the following requests, the initiator shall transmit the request
to this station without retry, until the station acknowledges or responds correctly again. After
positive acknowledgement, the initiator shall mark again the addressed station as
"operational". When processing the next request, the initiator shall continue the original mode
of operation with this station.

6.7.2 Synchronous transmission

Errors in the line protocol (see Clause 9 of IEC 61158-2) and in the medium access protocol,
such as erroneous start octets and FCS octets, DLPDU length, response times etc. shall
result in the station reactions specified in 6.7.1.

— 64 —

61158-4-3 © IEC:2007(E)

7 DLPDU-specific structure, encoding and elements of procedure

7.1 DLPDUs of fixed length with no data field

711 Asynchronous transmission

The formats of DLPDUs of fixed length with no data field shall be as shown in Figure 24.

a) Format of the request DLPDU:

| SYN |s|)1

DA|SA|FC FCS|ED|

L

A

b) Format of the acknowledgement DLPDU:

\ 4

SD1

DA SA

FC

FCS | ED

A

c) Format of the short acknowledgement DLPDU:

where
SYN
SD1
DA
SA
FC
FCS
ED

SC

\ 4

is the synchronization period, a minimum of 33 line idle bits
is the start delimiter, value: 10H
is the destination address

is the source address
is the frame control
is the frame checksum

is the end delimiter, value: 16H
is the information field length, fixed number of octets: L = 3
is the single character, value: E5H.

Figure 24 — DLPDUs of fixed length with no data field

Transmission Rules

AW N =

)
)
)
)

The receiver shall check:

Line idle state shall correspond to signalling level binary "1".
Each request DLPDU shall be preceded by at least 33 line idle bits (synchronization time).

No idle states are allowed between a DLPDUs UART characters.

— for each UART character: start bit, stop bit and parity bit (even),
— for each DLPDU: start delimiter, DA, SA, FCS and end delimiter,

— and the synchronization time in case of a request DLPDU.

If the check fails, the entire DLPDU shall be discarded.

61158-4-3 © IEC:2007(E) - 65—

SC and SD1 (as well as SD2 and SD3, see 7.2.1 and 7.3.1) have Hamming distance Hd=4
and are safe against being shifted (see for example IEC 60870-5-1), that is, the single
character SC appears to be a DLPDU with Hd=4.

For requests to be acknowledged (Send Data with Acknowledge), only SC is a permissible
positive acknowledgement. For requests to be answered (Send and Request Data with
Reply), SC is permissible if no data is available (see Table 3, b7=0, Code-No 9).

7.1.2 Synchronous transmission

The formats of DLPDUs of fixed length with no data field shall be as shown in Figure 25.

a) Format of the request DLPDU and format of the acknowledge DLPDU:

SDL1 | DA I SA I FC FCS

b) Format of the short acknowledgement DLPDU:

where
SDL1 is the start octet 1 (start delimiter 1 data link), code: 10H
SDL5 is the start octet 5 (start delimiter 5 data link), code: E5H

DA is the destination address

SA is the source address

FC is the frame control

FCS s the frame check sequence, 2 octets

L is the information field length, fixed number of octets: L = 3.

Figure 25 — DLPDUs of fixed length with no data field

Transmission Rules

In addition to the transmission rules of the Ph-layer in Clause 9 of IEC 61158-2, the receiver
shall check the SDL, DA/SA and FCS octets for each DLPDU. If the check fails, the whole
DLPDU shall be discarded.

7.2 DLPDUs of fixed length with data field
7.21 Asynchronous transmission

The format of DLPDUs of fixed length with data field shall be as shown in Figure 26.

- 66 - 61158-4-3 © IEC:2007(E)

a) Format of the send/request DLPDU:

SYN SD3 | DA SA FC DATA_UNIT | FCS ED

A
A\ 4

b) Format of the response DLPDU:

SD3 | DA SA FC DATA_UNIT | FCS ED

L
where
SYN is the synchronization period, a minimum of 33 line idle bits
SD3 is the start delimiter, value: A2H
DA is the destination address
SA is the source address
FC is the frame control
DATA_UNIT is the data field, fixed length (L-3) = 8 octets
FCS is the frame checksum
ED is the end delimiter, value: 16H
L is the information field length, fixed number of octets: L = 11.

Figure 26 — DLPDUs of fixed length with data field
Transmission Rules

The same transmission rules shall apply as for DLPDUs of fixed length with no data field (see
7.1.1).

7.2.2 Synchronous transmission

The formats of DLPDUs of fixed length with data field shall be as shown in Figure 27.

a) Format of the send/request and response DLPDUs:

SDL3 | DA |SA I FC IDATA_UNIT FCS

where
SDL3 is the start delimiter 3 data link, code: A2H
DA is the destination address
SA is the source address
FC is the frame control
DATA_UNIT is the data field, fixed length (L-3) = 8 octets
FCS is the frame check sequence, 2 octets
L is the information field length, fixed number of octets: L = 11.

Figure 27 — DLPDUs of fixed length with data field

61158-4-3 © IEC:2007(E) - 67 —
Transmission Rules

The same transmission rules shall apply as for DLPDUs of fixed length with no data field (see
7.1.2).

7.3 DLPDUs with variable data field length
7.31 Asynchronous transmission
For a variable number of data octets the length information shall also be transmitted in the

DLPDU. This length information shall be contained twice in a fixed DLPDU header at the
beginning of the DLPDU. Thus it is protected with Hd = 4 and safe against slip.

The format of DLPDUs with variable data field length shall be as shown in Figure 28.

a) Format of the send/request DLPDU:

4
E;YN SD2 LE LEr | SD2 DA SA FC | DATA_UNIT | FCS ED

A
\4

b) Format of the response DLPDU:

L
ISD2 | LE | LEr |SD2 DA | SA | FC |DATA_UNIT FCS | ED I

L
where
SYN is the synchronization period, a minimum of 33 line idle bits
SD2 is the start delimiter, value: 68H
LE is the octet length, allowed values: 4 to 249
LEr is the octet length repeated
DA is the destination address
SA is the source address
FC is the frame control
DATA_UNIT is the data field, variable length (L-3), max. 246 octets
FCS is the frame checksum
ED is the end delimiter, value: 16H
L is the information field length, variable number of octets: L = 4 to 249.

Figure 28 — DLPDUs with variable data field length
Transmission Rules

The same transmission rules as for DLPDUs of fixed length with no data field shall be applied
(see 7.1.1).

In addition to transmission rule 4, LE shall be identical to LEr, and the information octets shall
be counted from the destination address (DA) up to the frame checksum (FCS) and the result
shall be compared with LE.

7.3.2 Synchronous transmission

The formats of DLPDUs with variable data field length shall be as shown in Figure 29.

- 68 - 61158-4-3 © IEC:2007(E)

a) Format of the send/request and response DLPDUs:

ISDL2I LE ILEr |SLD2 DA ISA IFC |DATA_UNIT FCS

L
where
SDL2 is the start delimiter 2 data link, code: 68H
LE is the length, value: 4 to 249
LEr is the length (repeated)
DA is the destination address
SA is the source address
FC is the frame control
DATA_UNIT is the data field, variable length (L-3), max. 246 octets
FCS is the frame check sequence, 2 octets
L is the information field length, variable number of octets: L = 4 to 249.

Figure 29 — DLPDUs with variable data field length

Transmission Rules

The same transmission rules as for DLPDUs of fixed length with no data field shall apply (see
7.1.2). In addition, the receiver shall check if LE and LEr coincide. The information octets
shall be counted from the destination address (DA) up to the frame check sequence (FCS)
and shall be compared with LE.

7.4 Token DLPDU
7.4.1 Asynchronous transmission

The format of the token DLPDU shall be as shown in Figure 30.

SYN |SD4| DA | SA

where
SYN is the synchronization period, a minimum of 33 line idle bits
SD4 is the start delimiter, value: DCH
DA is the destination address
SA is the source address.

Figure 30 — Token DLPDU

Transmission Rules

1) Line idle state shall correspond to signalling level binary "1".

2) Each token DLPDU shall be preceded by at least 33 line idle bits (synchronization time).
3) No idle states are permitted between a DLPDUs UART characters.

4) The receiver shall check:

— per UART character: start bit, stop bit and parity bit (even),
— per DLPDU: synchronization time, start delimiter and DA/SA.

If the result of the check is negative, the whole DLPDU shall be discarded.

61158-4-3 © IEC:2007(E) - 69 -

7.4.2 Synchronous transmission

The format of the token DLPDU shall be as shown in Figure 31.

’SDL4| DA I SA IFCS‘

where
SDL4 is the start delimiter 4 data link, code: DCH
DA is the destination address
SA is the source address
FCS is the frame check sequence, 2 octets.

Figure 31 — Token DLPDU
Transmission Rules

The same transmission rules as for DLPDUs of fixed length with no data shall apply (see
7.1.2).

7.5 ASP DLPDU

The ASP DLPDU is generated by the DLE in the isochronous mode to produce bus activity in
the spare time of an isochronous cycle to avoid a time-out (TTQ). The format of the ASP

DLPDU is the same as described in 7.1, with the following restrictions:

— Control Octet (FC) is equal to Request DL Status with Reply (Code 49H)
— DA is equal to SA
— there is no response DLPDU by any DLE for this ASP DLPDU.

7.6 SYNCH DLPDU

The SYNCH DLPDU is generated by the DLE in the isochronous mode to mark the beginning
of a new isochronous cycle. The format of the SYNCH DLPDU is the same as described in
7.3, with the following restrictions:

— FC, the Control Octet, is equal to Send Data with No Acknowledge high (Code 46H)

— DA is equal to 127

— SAE is equal to 62

— DAE is equal to 58

— the DATA_UNIT shall contain the value of the operating parameter SYNCHT

— there is no response DLPDU by any DLE for this SYNCH DLPDU.

7.7 Time Event (TE) DLPDU

The TE DLPDU is used to synchronize the clock at the time receiver. The format of the TE
DLPDU is the same as described in 7.1, with the following restrictions:

— FC, the Control Octet, is equal to Time Event (Code 40H)
— DA is equal to 127
— there is no response DLPDU by any DLE for this TE DLPDU.

7.8 Clock Value (CV) DLPDU

The CV DLPDU is used to transmit the clock value to the time receivers. The format of the CV
DLPDU is the same as described in 7.3, with the following restrictions:

— FC, the Control Octet, is equal to Clock Value (Code COH)

-70 - 61158-4-3 © IEC:2007(E)

— DA is equal to 127
— SAE and DAE are not used
— there is no response DLPDU by any DLE for this CV DLPDU.

7.9 Transmission procedures
7.91 Asynchronous transmission
Permissible DLPDU sequences (message transfer periods) for asynchronous transmission are

described in Figure 32 through Figure 34. Error sequences and broadcast/multicast messages
are excluded.

|SYN| SD1 |DA|SA |FC|FCS|ED

SC Short Acknowledgement (E5H) positive (ACK) or negative (no Response Data)

or

| SD1 | DA | SA | FC | FCS | ED |Acknow|edgement(+/—)

or response DLPDU:

| sb3 | DA | SA | FC | DATA_UNIT | FCs | ED |fixed length

or

|SD2| LE | LEr | sD2 | DA | SA | FC |DATA_UNIT | FCs | ED |variab|e length

Figure 32 — Send/request DLPDU of fixed length with no data

| SYN | SD4 | DA | SA | Token

SYN | sb3 | DA | SA | FC | DATA_UNIT | FCs | ED |fixed length

SC | Short Acknowledgement (E5H) positive or negative (no Response Data)
Or
| SD1 | DA | SA | FC | FCS | ED |Acknow|edgement (positive/negative)

or response DLPDU:
| sD3 | DA | SA | FC | DATA_UNIT | FCS | ED |fixed length
Or

| sD2 | LE | LEr | sD2 | DA | SA | FC | DATA_UNIT | FCS | ED |variable length

SYN | SD4 | DA | SA |Token

Figure 33 — Token DLPDU and send/request DLPDU of fixed length with data

61158-4-3 © IEC:2007(E) -71-

|SYN | sD2 | LE | LEr | SD2 | DA | SA | FC | DATA_UNIT | FCS |ED

SC | Short Acknowledgement (E5H) positive or negative (no Response Data)
Or
| SD1 | DA | SA | FC | FCS | ED |Acknowledgement (positive/negative)

or response DLPDU:
| sb3 | DA | SA | FC | DATA_UNIT | FCS | ED |fixed length
Or

| sb2 | LE |LEr| sD2 | DA | SA | FC | DATA_UNIT | FCs | ED | variable length

Figure 34 — Send/request DLPDU with variable data field length

7.9.2 Synchronous transmission

Permissible DLPDU sequences (message transfer periods) for synchronous transmission are
described in Figure 35 through Figure 37. Error sequences and broadcast/multicast messages
are excluded.

|SDL1| DA |SA| FC |ch

SDL5 FCS | Short Acknowledgement (E5H) positive (ACK) or negative (no Response Data)
Or

|SDL1| DA | SA | FC | FCS |Acknowledgement(+/—)

or response DLPDU:

|SDL3| DA | SA | FC | DATA_UNIT | FCs |fixed length
Or
|SDL2| LE | LEr | SDL2 | DA | SA | FC | DATA_UNIT | FCS |variab|e length

Figure 35 — Send/request DLPDU of fixed length with no data

-72 - 61158-4-3 © IEC:2007(E)

|SDL4| DA | SA |FCS Token

SDL3| DA | SA | FC | DATA_UNIT FCS fixed length

SDL5 Short Acknowledgement (E5H) positive or negative (no Response Data)

or

|SDL1| DA | SA | FC | FCS Acknowledgement (positive/negative)

or response DLPDU:

|SDL3| DA | SA | FC | DATA_UNIT | FCs |fixed length

or
|SDL2| LE | LEr | SDL2 | DA | SA | FC | DATA_UNIT | FCS |variable length
SDL4| DA | SA | FCS | Token

Figure 36 — Token DLPDU and send/request DLPDU of fixed length with data

|SYN | sD2 | LE | LEr | sD2 | DA | SA | FC | DATA_UNIT | FCS | ED

SC | Short Acknowledgement (E5H) positive or negative (no Response Data)

or

| SD1 | DA | SA | FC | FCS | ED |Acknowledgement (positive/negative)

or response DLPDU:
| sD3 | DA | SA | FC | DATA_UNIT | FCS | ED |fixed length

or

| sD2 | LE |LEr| sD2 | DA | SA | FC | DATA_UNIT | FCS | ED |variab|e length

Figure 37 — Send/request DLPDU with variable data field length

61158-4-3 © IEC:2007(E) -73 -

8 Other DLE elements of procedure

NOTE Annex A specifies a number of finite state machines used by the DLE to provide its low-level and high-level
protocol functions. The specification of Annex A is complementary to the textual specification in this and related
clauses in the body of this standard. In case of conflict the requirements of Annex A take precedence.

8.1 DL-entity initialization

After power on (PON) the DL-entity of Master and Slave stations shall enter the "Offline"
state. Within this state, the DL-entity does not receive or transmit any signals (DLPDUs) from
or to the bus.

The DL-entity may enter the "Passive_ldle" or "Listen_Token" state from the "Offline" state
only, if the operating parameters (DL-variables) have been set for correct protocol handling
(see IEC 61158-3-3). The operating parameters, shown in Table 5, shall be provided by the
DLMS-user.

Table 5 — Operating parameters

Parameter number Name
1 Station DL-address TS
2 Data rate (kbit/s)
3 Single/redundant media available
4 Hardware release
5 Software release
6 Slot time Tg
7 Station delay time min TgpR
8 (see Note 1) Station delay time max TgpRr
9 (see Note 1) Transmitter fall/Repeater switch time Tqy|

10 (see Note 1) Setup time TggT

11 (see Note 1) Target rotation time TTR

12 (see Note 1) GAP update factor G

13 (see Note 1) Master station enter/leave the logical ring (in_ring_desired)

14 (see Note 1) Highest station address (HSA)

15 (see Note 1) Maximum number of retries (max_retry_limit)

16 (see Note 2) Clock synchronization interval Tcg

17 (see Note 3) Contents of the SYNCH User Data (SYNCHT)

18 (see Note 3) Isochronous cycle time TcT

19 (see Note 3) Allowed maximal time shift TTg

NOTE 1 This applies only to Master stations.
NOTE 2 This applies only to stations able to support clock synchronization.

NOTE 3 This applies only to stations able to work in isochronous mode.

8.2 States of the media access control of the DL-entity
8.2.1 General

A Master station's media access control state machine (MAC) is described by means of 11
states and the transitions between them. A Slave station's MAC has 2 states.

-74 - 61158-4-3 © IEC:2007(E)

Figure 38 shows as an overview the combined state diagram of the Master (state 0 to 9 and
11) and the Slave station (state 0 and 10).

» Passive ldle
> _

10
u

Offline
0

Listen_Token

* Active_ldle »| Claim_Token
2 3

v LT

® Wait_TCT
11

11w u‘

al

Use_Token
4 ——9
y A

® Await_Data_Response

I T

Check_Access_Time |

Check_Token_Pass ®
® 8

|)

Await_Status_Response [

LT

Figure 38 — DL-state-diagram

8.2.2 Offline

The "Offline" state shall be entered immediately after power on, after the DLM-RESET service,
or after certain error conditions have been detected. After power on each station should
perform a self-test. This internal self-test depends on the implementation and does not

61158-4-3 © IEC:2007(E) - 75—

influence the other stations. For this reason, the self-test procedure is not specified in this
specification.

After terminating the power on sequence, the MAC remains in the "Offline" state until all
required operating parameters (see 8.1) have been initialized. The DL-entity may only
afterwards connect to the transmission medium, but without becoming active.

8.2.3 Passive_ldle

After its parameters are initialized, the Slave station's MAC or the Master station's MAC
depending on the operating parameter "in_ring desired" (in_ring_desired equal false)
(see Table 5) shall enter the "Passive_ldle" state and listen to the line. If a plausible
send/request DLPDU addressed to that station is received, the DL-entity shall acknowledge or
respond as required, except for DLPDUs with global address (broadcast message, see 6.3.1)
and token DLPDUs addressed to itself. The token DLPDU is discarded.

At the occurrence of the DLM-RESET service the MAC re-enters the "Offline" state.

8.24 Listen_Token

After its operating parameters have been initialized and the value of the parameter
"in_ring_desired" is true, the Master station's MAC shall enter the "Listen_Token" state. In this
state the Master station's DL-entity shall monitor the line in order to identify those Master
stations which are already in the logical token ring. For that purpose, token DLPDUs are
analysed and the station addresses contained in them are used to generate the list of Master
stations (LMS). After listening to two complete token rotations, the MAC shall enter the state
"Active_ldle".

During LMS generation a "Request DL Status with Reply" responds with "Master station not
ready" after one token rotation is completed. All other DLPDUs are not processed in the
"Listen_Token" state, that is, they are neither acknowledged/responded nor indicated to the
local DLS-user.

If the MAC detects its own address as source address (SA) in two token DLPDUs when
registering the Master stations, it shall assume that another Master station with the same
address exists already in the ring. The MAC shall then re-enter the "Offline" state and report
this event to the local DLMS-user.

If the MAC observes no bus activity for the time-out period, it shall assume that an
initialization or a restoration of the logical token ring is necessary. The MAC shall enter the
"Claim_Token" state.

8.2.5 Active_ldle

On leaving the "Listen_Token" state, the Master station's MAC shall enter the "Active_Idle"
state and shall wait for received messages. If it receives an send/request DLPDU addressed
to itself or as broadcast, it shall proceed, acknowledge or respond as required and shall
unfreeze the token-rotation-timer if the token-rotation-timer is frozen.

The "Listen_Token" state shall be entered in the case of an error, if two token DLPDUs with
SA = TS are received in immediate succession. This event shall be reported to the local
DLMS-user.

If the MAC find out that it was taken from the logical token ring not on its own initiative, it also
shall enter in the "Listen_Token" state and report this (Out_of ring) to the local DLMS-user.
The "Listen_Token" state shall also be entered in case of the MACs LMS is not ready, that is,
the SA and DA in the token DLPDU are not compliant with the LMS entry for a number of
Tokens receipts. Token DLPDUs, which indicate the addition and removal of a Master, shall
not be counted as not compliant.

- 76 - 61158-4-3 © IEC:2007(E)

If the MAC observes no bus activity for the time-out period, it shall assume that a restoration
of the logical token ring is necessary. The MAC shall try to claim the token and to (re)initialize
the logical ring ("Claim_Token" state).

If the MAC is addressed by a "Request DL Status with Reply" transmitted by its predecessor
(PS) then:

a) if the DL-address (TS) is contained in the LMS of the MAC, the MAC shall respond with
"Master station in logical ring", or

b) if the DL-address (TS) is not contained in the LMS of the MAC, the MAC shall respond
with "Master station ready to enter logical token ring".

After receiving a token DLPDU addressed to the MAC itself and the isochronous mode is not
set, it shall

1) unfreeze the token-rotation-timer if this timer is frozen,

2) drop the token, if the token is not sent by the predecessor or if the DL-address (TS) is not
contained in the LMS of the MAC. In these both cases, the MAC shall update the LMS,

3) otherwise, by processing the transition the TRR (real rotation time) shall be calculated as

the difference between target rotation time and the read value of the token-rotation-timer
and the token-rotation-timer shall be restarted with target rotation time. The MAC shall
enter:

i) the "Use_Token" state, if a high priority message is available, or
ii) the "Check_Access_Time" state if no high priority message is available.
After receiving a token DLPDU addressed to the MAC itself and the isochronous mode is set,
it shall
1) send an ASP message, and
2) change into the "Wait_TCT" state.

If the MAC receives an ASP message and the isochronous mode is set, it shall freeze the
token-rotation-timer.

8.2.6 Claim_Token

The MAC shall enter the "Claim_Token" state after the "Active ldle" state or the
"Listen_Token" state, when its time-out has expired. In this state it shall try to initialize the
logical ring or to start an initialization.

When re-initializing and the MAC is not in the isochronous mode, the DL-entity address is
contained in the LMS of the MAC, and thus the "Use_Token" state is entered immediately, if
high priority message are pending. Otherwise the MAC shall enter the "Check_Access_Time"
state.

When re-initializing and the MAC is in the isochronous mode, the DL-entity address is
contained in the LMS of the MAC, and thus the MAC shall send an ASP message and shall
enter the "Wait_TCT" state.

When initializing (the DL-address (TS) is not contained in the LMS of the MAC), at first the
token shall be addressed twice to the own DL-entity, that is, NS = TS, namely in the
"Pass_Token" state. This is necessary in order to cause an entry in the other Master stations'
LMS.

8.2.7 Wait_TCT

This state shall be entered after the "Claim_Token" state, "Check_Token_Pass" state or
"Active_ldle" state when a ASP message was passed if the Master is in the isochronous

61158-4-3 © IEC:2007(E) -77 -

mode. In this state the MAC shall pass as much ASP messages as spare time is available
(TRCT < (TcT-TpPsp))- If no time available to pass an ASP messages then the MAC shall

Q

load the passive-spare-time-timer with TCT-TRCT,

O

start the passive-spare-time-timer,

(¢}

wait until the passive-spare-time-timer expires, and

)
)
)
)

o

pass a SYNCH message for synchronization purposes.

The MAC shall indicate the sending of the SYNCH message to the local DLMS-user by a
Synch event. If the SYNCH message could not be sent within a defined maximum time shift
(maxTsH) then the MAC shall pass a Synch_Delay event to the local DLMS-user in addition.

8.2.8 Use_Token

The MAC enters the "Use_Token" state in order to process high priority or low priority
message transfer periods.

The MAC shall enter the

a) "Await_Data_Response" state after each transmitted send/request DLPDU with
acknowledgement or response and start the slot-timer (see 5.5.5), or

b) "Check_Access_Time" state in the case of a SDN or CS service is transmitted, or

c) "Await_Status_Response" state in the case of a "Request DL Status with Reply" is
transmitted.

8.29 Await_Data_Response

This state shall be entered in the case of the transmission of requests with acknowledgement
or response. The MAC waits one slot time for the receipt of the acknowledgement or
response DLPDU.

The MAC shall enter the
a) "Check_Access_Time" state in order to check the available token holding time for
processing potential further requests, if:

1) a valid acknowledgement DLPDU or valid response DLPDU addressed to the request's
initiator or

2) after the retry (retries) no valid acknowledgement or response is received and no more
retry is possible. In this case the MAC shall notify the DLS-user accordingly. Further
requests to this station are not repeated in case of errors, until a correct message
transfer period (send/request data) has been performed;

b) "Use_Token state, if:

1) an invalid DLPDU is received (start-, end-, length-, FCS error; start-, stop-, parity-bit
error or slip error) and a retry is possible, or

2) slot time expires (see 5.5) and a retry is possible;

and shall retry the transmission of the send/request DLPDU.

Receipt of another valid DLPDU indicates that an error has occurred. The MAC shall enter the
"Active_ldle" state and discard the received DLPDU.

8.2.10 Check_Access_Time

In this state the available token holding time shall be computed (see 5.5.5). Only if there is
still token holding time available, the MAC may re-enter the "Use_Token" state. Otherwise the
MAC shall enter the "Pass_Token" state.

- 78 - 61158-4-3 © IEC:2007(E)

If token holding time is available then the MAC shall transmit:

a) if high priority message are pending a high prior send/request DLPDU and shall enter the
"Use_Token" state, or

b) if low priority message are pending a low prior send/request DLPDU and shall enter the
"Use_Token" state, or

c) when the GAP update time has expired, but there is still token holding time TTH available,
then the MAC shall try to record one possible new station in the GAP before passing the
token, in order to include it in the logical ring, if necessary. For that purpose, the MAC
transmits a "Request DL Status with Reply" and enters the "Use_Token" state.

8.2.11 Pass_Token

In the "Pass_Token" state the MAC shall try to pass the token to the next station (NS) in the
logical ring. When transmitting the token DLPDU, the MAC shall check by simultaneous
monitoring if the transceiver is working correctly. If it does not receive its own token DLPDU,
there is a fatal error in the transmit or receive channel. The MAC shall stop its activity in the
logical ring, enter the "Offline" state and notify the DLMS-user.

If the MAC receives its own token DLPDU corrupted, this may be caused by a temporarily
defective transmitter, receiver, or by the bus line. This error condition does not result in
stopping activities in the first instance, instead the MAC shall enter the "Check_Token_Pass"
state as after receiving the token DLPDU correctly.

Only after the token DLPDU has been retransmitted (due to no reaction from NS) and
monitored as incorrect, the MAC shall stop its activity in the logical ring, enter the "Offline"
state and notify the DLMS-user.

If the MAC has sent the token successfully then it shall enter the "Check_Token_Pass" state.

Only if no successor is known, that is, this DL-entity is at the moment the only active station
on the bus, it shall pass the token to itself and then re-enter:

a) the "Use_Token" state if a high priority message available and has been sent or
b) the "Check Access_Time" state if no high priority message available;

8.2.12 Check_Token_Pass

"Check_Token_Pass" is the state in which the MAC waits one slot time for a reaction of the
station to which it has passed the token. This waiting time allows for the delay between the
receipt of the token DLPDU and the ensuing transmission reaction of the addressed station.

If the MAC detects a valid DLPDU header within a slot time, it shall assume that the token
passing was successful. The DLPDU shall be processed as if it were received in the
"Active_ldle" state.

If an invalid DLPDU is detected within the slot time, the MAC shall assume that another
station is active and therefore also enter the "Active_Idle" state.

If the MAC does not receive any DLPDU within one slot time, it shall pass the token to the
successor again and re-enter the "Pass_Token" state and react as described in 5.3.2.1.

If the MAC does not receive any DLPDU within one slot time and it was the second pass
token to the same successor then the MAC shall remove its NS from the LMS, pass the token
to the new successor (NS of NS) and re-enter the "Pass_Token" state and react as described
in 5.3.2.1.

61158-4-3 © IEC:2007(E) -79 -

If the MAC receives a Token with DA equal TS and the isochronous mode is active, then the
MAC shall send an ASP message and shall enter the "Wait_TCT" state.

8.2.13 Await_Status_Response

This state is entered from the "Use_Token" state during GAP maintenance. In this state the
MAC shall wait one slot time for an acknowledgement DLPDU.

The MAC shall enter the "Check_Access_Time" state:

a) if nothing is received during the slot time, or
b) a corrupted DLPDU is received.

If an existing station does not answer it shall be deleted from the GAPL, that is, be marked as
an unused address. Then the MAC shall enter the "Check_Access_Time" state.

If a status request is answered by a new Slave station or a Master station that does not want
to be included in the ring, that station shall be entered in the GAPL.

If the MAC receives a valid acknowledgement with "Master station ready to enter logical token
ring" then a new Master station acknowledges that it wants to be included in the logical ring.
The MAC shall shorten the own GAP to the new NS and shall pass the token to this station
and enter the "Pass_Token" state.

If the MAC receives any other DLPDU instead of an acknowledgement DLPDU (indicates that
multiple tokens may exist), it shall enter the "Active_ldle" state.

8.3 Clock synchronization protocol
8.3.1 Overview

Synchronization of clocks between devices on a fieldbus segment and a time master
application is provided in parallel with other communication functions. A time master is a
fieldbus master device. The scheme used is a "backwards time based correction". This results
in very few real-time constraints being imposed on a field device. There is no requirement for
generating messages at precise instants. Instead, knowledge of when a special timer event
message has been broadcasted is subsequently distributed and used to calculate appropriate
clock adjustments.

There is no confirmation of correct reception at the remote DLE, as neither
acknowledgements are given nor local retries take place. Once the data is sent it reaches all
remote DLEs at the same time (not taking into account signal propagation time, Physical
Layer delays and Data Link Layer delays). For the correct and secure time calculation the
time transfer will take place in a sequence of two messages: the first transfer (Time Event)
and the second transfer (Clock Value). By receiving the Timer Event, every remote DLE starts
its receive-delay-timer. By receiving the clock value, the value of the receive-delay-timer is
send within the indication. Each addressed remote DLE that has received the clock value
error-free passes it to the DLS-user by means of a DL-CS-CLOCK-VALUE indication primitive
(see IEC 61158-3-3 fieldbus connectionless-mode Data Link Service, Clock Synchronization
service). If errors occur by a violation of the sequence (e. g. a Timer Event is received twice
or expiration of the Clock Synchronization Interval Timer), this error is notified to the DLS-
user.

8.3.2 State machine time master

The clock synchronization sequence consists of two messages broadcasted by the time
master. When the first message, called Time Event, is broadcast, all of the DLEs receiving it
start a receive-delay-timer. The time master then sends a second message, the Clock Value,
which contains the actual time when the Time Event was sent. Upon reception of this
message, the remote DLEs can calculate their receive delay time value. In conjunction with

- 80 - 61158-4-3 © IEC:2007(E)

the received clock value each DLS-users is able to back calculate the Time Event message
reception time according to its own clock, and compare it with the value distributed in the
clock message. Their clocks may then be adjusted to agree with the time master's. In order to
support scheduling and to check that message pairs Time Event / Clock Value are matched,
Clock Value also contain the time at which the last clock synchronization occurred, which is
the time sent at the last Time Event.

Special DL services exist to support clock synchronization. A station's clock is adjusted by the
DLS-user, but precise measurement of the time when sending or receiving the Time Event
must be done in the DLE. Therefor the DLE uses special timers to measure the send delay
respective receive delay.

On the sending side, the DLE in the time master starts its DL timer - the send-delay-timer - by
receiving a DL-CS-TIME-EVENT request from the DLS-user. The DLE will send a TE DLPDU
and stop the send-delay-timer when the last bit is sent. It will then deliver a confirmation to
the DLS-user that the message was sent, including a service parameter which reports the
calculated value of the send delay time. The DLS-user then adds this value to the time to
determine when the Time Event was actually sent. A Clock Value DLPDU which includes this
time is then broadcast to remote DLEs.

On the receiving side, the DLE starts its timer - the receive-delay-timer - when it receives the
TE DLPDU. When the clock value is received (CV DLPDU), the receive-delay-timer is stopped
and an indication is delivered to the DLS-user together with the calculated receive delay time
to determine when the time message was received according to its clock.

The clock synchronization sequence supports optionally redundant time masters. Although
only one is normally active at a given time, when switchover occurs more than one time
master may be broadcasting the Time Event and Clock Value messages. Therefore, when the
Time Event is received, the source station address is saved by the receiving DLEs. CV
DLPDUs from other masters will be ignored.

Figure 39 illustrates an overview of the Clock Synchronization.

Time Master Time Receiver

Ser%n'ill'?mgrlgsent TE DLPDU Start receive-delay-timer

Start send-delay-timer J (none) Save Source_Address

Stop send-delay-timer
time_sent := snapped time
+ send_delay

l Check Source_Address

Stop receive-delay-timer
CV DLPDU Snap Time

I » time_diff = snapped time
;i'e_sent, last_clk_val)| - receive_delay - time_sent

l

| Adjust clock if necessary

| Send Clock Value

last_clk_val := time_sent
Start CS_Interval

Figure 39 — Overview of clock synchronization

The clock synchronization protocol provides optionally redundant time masters, and a simple
election procedure for determining the active time master. One time master on each link is
presumed to be the primary time master. Other time masters are standby time masters that
can act as sources of clock synchronization when the primary time master is not active.
Standby time masters are not ranked in order of importance. The clock synchronization
protocol will always select the primary time master as the clock synchronization source if it is
present. The figure below is the state machine definition for the operation of a primary time
master (TM) or a standby time master.

61158-4-3 © IEC:2007(E) - 81—

Standby time masters remain inactive as long as they receive clock synchronization
messages from the active time master within a monitoring window. The monitoring window is
restarted at each received clock synchronization message. The length of the monitoring
window is set to 4 x Tcs|, a multiple of the Clock Synchronization Interval Time.

If no clock synchronization message is received during the monitoring window it is presumed
that the active time master has failed. Standby time master then begin sending clock
synchronization messages.

If a standby time master receives a clock synchronization message from another standby time
master, then it will fall back to monitoring clock synchronization sequences. Messages
received from the primary time master always result in the standby time master falling back to
monitoring (see Figure 40).

If Clock_value revd
Set T=4xTgg
Set T=4xTgg]

Deact_Time_Master

If T expired
send TE, send CV
T=Tcsi

If T expired
send TE, send CV
T=Tcsi

Act_Time_Master

If Clock_value rcvd
Set T=4xTgg

where

TE, CV: Timer Event, Clock Value
T Actual elapsed Timer Value
Tesi: Clock Sync Interval

Figure 40 — Time master state machine

8.3.3 State machine time receiver

The receiver state machine is described in Figure 41. The receiver monitors clock messages
within a time window of a multiple of the Clock Synchronization Interval Time 4 x TCS].

It adjusts, if necessary, its clock after reception of a correct clock synchronization sequence.
No clock adjustment is made and errors are marked in following cases .

a) Different source addresses in Time Event and Clock Value

b) No clock synchronization message received within time window

c) Clock values not matched (different last_clk_val).

The handling of the Time Event, checking the source address of TE/CV DLPDU and the
receive-delay-timer is part of the DLE.

With the reception of a valid Clock Value (SA is the same as the SA in the previously received
Timer Event) , a DL service gives the received synchronization time and the receiver part of

- 82 - 61158-4-3 © IEC:2007(E)

the communication delay to the DLS-user. The receiver part of the communication delay
includes the time past since the receive-delay-timer was started with the reception of a TE
DLPDU till read from the DLE after the reception of a CV DLPDU.

INIT

Set T =2"TC$I

WAIT_FOR_TIMER_EVENT

A

If TEmsgrevd/
Set TM=SA
start T

\

WAIT_FOR_CLK_VALUE

If T==0/

J Status="notsynchronised

If TEmsgrevd&&TM==SA/
Status="sequenceviolation”
If CLKmsgrevd&&TM==SA/
Status="synchronized”

If TEmsgrevdlICLKmsgrevd &&

TM<>SA
TE,CV: Timer Event, Clock Value
T™: Time Master
T Actual elapsed Timer Value
TCsSI: Clock Sync Interval
SA: Source Address

Figure 41 — Time receiver state machine

Figure 42 illustrates the Clock Synchronization sequences.

61158-4-3 © IEC:2007(E) - 83 -

Time master Time receiver

AL DL BUS DL AL

/snap time/
(DL-CS-TIME-EVENT request)
] |-

/Start send-delay-timer/

[TE DLPDU]

]---—]
/Start receive-delay-timer/
/Save Source address

Time Event/
[|-~ [
(DL-CS-TIME-EVENT confirm) /Stop send-delay-timer/

<Status=0OK, send_delay_time>

calculate time sent = time snapped
+ send-delay-time

(DL-CS-CLOCK-VALUE request)
<time sent, last_clk_val>
[CV DLPDU]

[we3]

/Stop receive-delay-timer/

(DL-CS-CLOCK-VALUE indication)

[¢=---[¢—--[< time sent, last_clk_val,
) SyCl_status, receive_delay_time,
(DL-CS-CLOCK-VALUE confirm) Src_add_clk_msg = ST1, Status >
Overwrite last_clk_seq /snap time/

by time sent

time diff = snapped time
- receive delay
- time sent

(adjust clock if necessary)

Figure 42 — Clock synchronization

-84 - 61158-4-3 © IEC:2007(E)

Annex A
(normative)

DL-Protocol state machines

NOTE 1 This annex specifies a number of finite state machines used by the DLE to provide its low-level and high-
level protocol functions. This specification is complementary to the textual specification in the body of this
standard; in case of conflict the requirements of this Annex take precedence.

NOTE 2 The finite state machine descriptions given here are necessarily less than a complete description of an
implementation. Additional requirements and considerations are found in the textual specification.

A.1 Overall structure

The DL protocol of Type 3 consist of the following three parts:

e handling of the services invoked by Application Layer (DL- and DLM-services);
e media access control (token handling and service interactions);

e interface to physical layer with PDU assembling/disassembling.

The Interface between the service handler (FLC/DLM) and Media Access Control (MAC)
consists of a set of Queues, a SAP-list and a DL-Data-Resource. (This will be used also by
the Send-Receive Unit —-SRU.)

The Interface between MAC and SRU consist of a set of services (see A.6.5).
The protocol sequences are described by means of State Machines.

In state diagrams states are represented as boxes state transitions are shown as arrows.
Names of states and transitions of the state diagram correspond to the names in the textual
listing of the state transitions.

The textual listing of the state transitions is structured as follows:
The first row contains the name of the transition.
The second row in define the current state.

The third row contains an optional event followed by Conditions starting with a “/” as first line
character and finally followed by the Actions starting with a “=>" as first line character.

The last row contains the next state.

If the event occurs and the conditions are fulfilled the transition fires, that is, the actions are
executed and the next state is entered.

Additional conventions for state machines are given in IEC 61158-6-3.

Figure A.1 illustrates the structuring of the Protocol Machines.

61158-4-3 © IEC:2007(E)

— 85 —

f

DL-DATA-ACK reg/cnf/ind
DL-DATA reg/cnflind
DL-DATA-REPLY reg/cnflind
DL-REPLY-UPDATE req/cnf
DL-MCT-DATA-REPLY req/cnf/ind
DL-DXM-DATA-REPLY ind
DL-CS-TIME-EVENT req/cnf
DL-CS-CLOCK-VALUE reg/cnf/ind

N

DLM-RESET req/cnf
DLM-SET-VALUE req/cnf
DLM-GET-VALUE req/cnf

DLM-EVENT ind
DLM-IDENT reg/cnf
DLM-DLSAP-STATUS req/cnf
DLM-DLSAP-ACTIVATE req/cnf
DLM-DLSAP-ACTIVATE-RESPONDER reg/cnf
DLM-DLSAP-ACTIVATE-SUBSCRIBER req/cnf
DLM-DLSAP-DEACTIVATE reqg/cnf
DLM-IDENT reg/cnf
DLM-DLSAP-STATUS req/cnf

~

/

v

FLC / DLM

I

0 GODE

t 1

MAC_RESET.reg/cnf

Queues g
onf - ind update MAC_BFAULT. ind
Req.low = 1 MAC_LFAULT.ind
vy Y
A
DL
SRC_SEND_DATA req/cnf
SRC_SEND_TOKEN.reg/cnf DATA
SRC_RECEIVE_DATA.ind RESOURCE
SRC_RECEIVE_TOKEN.ind N
SRC_RECEIVE_ERROR.ind SRC_RESET reg/cnf
SRC_SLOT_EVENT.ind SRC BFAULT.nd
SRC_SYNI_EVENT.ind SRC LFAULT.ind
v v

Ph-ASYN-DATA req
Ph-ASYN-DATA ind

Ph-DATA req/cnf
Ph-DATA ind

| ASYN Physical Layer

SYN Physical Layer

Figure A.1 — Structuring of the protocol machines

A.2 Variation of state machines in different devices

Table A.1 shows the assignment of State Machines parts to devices. The layout of the state
machine tables is defined in IEC 61158-6-3, state machine conventions.

— 86 —

61158-4-3 © IEC:2007(E)

Table A.1 — Assignment of state machines

Machine Options Remarks
Slave FLC SDN/SDA/SRD/CS/MSRD Indication
SRD reply-update Reqg/Con
DLSAP-Activate/Deactivate
DLM Limited set of FDL-variables
No DLSAP-Activate-service
MAC Only OFFLINE- and PASSIVE-IDLE- | support for Data rate-
State detection
SRU No Token
No Request (sending)
No Response (receiving)
Master FLC Full set of services
DLM Full set of services
MAC Full set of states
SRU Full set of services/states
Only Master | MAC Passive idle omitted Other option:
No active/passive switching Passive but no switching

A.3 DL Data Resource

The DL Data Resource models a data interface for all state machines of the Data Link Layer.
It contains queues and buffers for exchanging data between the sublayers of the DL.
Moreover it contains management information which have to be accessed by various
sublayers of the DL. Table A.2 illustrates all Data Resources of the Data Link Layer.

61158-4-3 © IEC:2007(E)

— 87 —

Table A.2 — Data resource

Name Struct element Type Range Remark
FDL-Variables SO
SAP_List [0..63, CS, NIL]
of S1
H_List S2
L_List S2
C_List S3
I_List S3
Ident_List S12
S0 Variables
TS us 0 to 126 DL-address of this station
Data_rate 9,6; 19,2; 31,25; 45,45; | Data rate of this fieldbus
93,75; 187,5; 500;
1500, 3000; 6000;
12000 kBit/s and
others
Medium_ single; redundant Availability of redundant media
redundancy
HW-Release LE_HR; hardware Hardware release number
release identification
SW-Release LE_SR; software Software release number
release identification
SYNCHT DSAP Contents of the SYNCH DLPDU
SSAP
LSDU
Tct u32 1 to 224-1 (bit times) Isochronous cycle time
Isochronous__ 0 non Isochronous
mode . .
1 with cycle correction
2 with cycle drop
3 TTR timer stop
maxTsh us 1 to 256 (bit times) maximal time shift
Tesi u32 1 to 232-1 (bit times) Clock Synchronization Interval
Time
Preamble_length | U8 8 to 64 (bit) Length of the preamble of
physical frames at synchronous
transmission
Tsyn us 4 to 32 (bit times) post transmission gap time of
synchronous transmission
Tsl u16 52 to 216-1 (bit times) | Slot time
minTsdr u16 20 to 216-1 (bit times) Smallest station delay time
maxTsdr u1e 20 to 216-1 (bit times) | Largest station delay time
Tqui us 0 to 28-1 (bit times) Transmitter fall time (line state
uncertain time) or repeater
switch time
Tset us 20 to 28-1 (bit times) Setup time
Ttr u32 20 to 224-1 (bit times) | Target rotation time
G us 1to 100 GAP update factor
in_ring_desired Bool true; false Request entry into or exit out of

the logical token ring

- 88 — 61158-4-3 © IEC:2007(E)
Name Struct element Type Range Remark
HSA us 0 to 126 Highest station address on this
fieldbus
max_retry_limit us 0 to 15 (preferably 0) Maximum number of retries
DLPDU_sent_ u32 0 to 232-1 Number of DLPDUs sent
count
Retry_count uU16 0to 216-1 Number of DLPDU repeats

DLPDU_sent_
count_sr

[0..126] of U32

max. 126 entries of 0
to 232-1

List of numbers of DLPDUs sent
per station

Error_count

[0..126] of U16

max. 126 entries of 0
to 216-1

List of numbers of no or
erroneous responses per station

SD_count u32 0 to 232-1 Number of correct start
delimiters

SD_error_count u16 0 to 216-1 Number of defective start
delimiters

Trr u32 20 to 224-1 (bit times) Real rotation time

LMS [0..126] of U8 up to 127 List of Master stations in the

DL-addresses logical ring
GAPL [0..126] of DLE max. 126 List all of stations in the own

status

DL-addresses (0 to
126) inclusive DLE
status

GAP

Cycle_violation_ | U32 Number of cycle violations

count which occurred since the start
of isochronous mode

Tid1 u16 33 bit + 2 bit+ 2 x Deduced Variables

Tset + Tqui
Tid2 u1e max (Tid1, maxTsdr)
S1 SAP_List

Access us 0..126, NIL

Function_List_R | List of SDN_H/L,SDA_H/L,SRD_H/L,
MSRD_H/L, CS(TE/CV)

Function_List_|I List of SDN_H/L, SDA_H/L,SRD_HI/L,
MSRD_H/L, CS(TE/CV)

LenList [0..16] of U8 0..246 List of permitted DLSDU lengths
depending on FC.Function

Indication_mode ALL/DATA/

UNCHANGED

Publisher_ TRUE/FALSE

enabled

Ibuffer S7 Indication Buffer

Ubuffer S8 Update Buffer

Sbuffer S7 Subscriber Buffer

S2 H_List/L_List

Num_entry u16

First_entry Ref to S9

Last_entry Ref to S9

Insert()

Remove()

61158-4-3 © IEC:2007(E) -89 -
Name Struct element Type Range Remark
S3 C_List/l_List
Num_entry u1e
First_entry Ref to S10
Last_entry Ref to S10
Insert()
Remove()
S4 REQM
DA us 0..126
DSAP us 0..63, CS, NIL
SSAP us 0..63, CS, NIL
FC S6
DLSDU S11
Serv_class high/low
Conf Bool
S5 RESM
DA us 0..126
DSAP us 0..63, CS, NIL
SSAP us 0..63, CS, NIL
FC S6
DLSDU S11
S6 FC
Function req SDN_H/L, SDA_H/L, SRD_HI/L,
rsp MSRD_H/L, Ident,
LSAP_Status, CS(TE/CV)
Frame_type req/rsp
FCB us 0,1
FCV us 0,1
Stn-type Slave,
M_n_rdy,
M_rdy,
M_in_ring
S7 Ibuffer
Num_entry u1e
First_entry Ref to S10
Last_entry Ref to S10
Insert()
Remove()
S8 Ubuffer
High_reference u32
High_buffer S11
High_transmit SINGLE/MULTIPLE
Low_reference u32
Low_buffer S11
Low_transmit SINGLE/MULTIPLE

-90 - 61158-4-3 © IEC:2007(E)
Name Struct element Type Range Remark
S9 H/L_List entry
Next entry Ref to S9
DA us 0..127
DSAP us 0..63, CS, NIL
SSAP us 0..63, CS, NIL
FC S6
DLSDU S11
conf Bool
S10 C/I_List entry
Next entry Ref to S10
DA us 0..127
SA us 0..127
DSAP us 0..63, CS, NIL
SSAP us 0..63, CS, NIL
FC S6
DLSDU S11
conf Bool
R_Status NO,DL,DH,OK,RS
, RR,UE,NR,RDH,
RDL,NA,DS
Reference u32
S11 DLSDU
Len us 0..246
Data [0..246] of U8
S12 Ident_List
Vendor_Name [0..32] of U8
Model_Name [0..32] of U8
HW_Release [0..32] of U8
SW_Release [0..32] of U8

61158-4-3 © IEC:2007(E) -91 -

A.4 FLC/DLM
A.41 Primitive definitions
A4d411 Primitive exchanged between DL-User and FLC

Table A.3 shows all primitives issued by DL-User to the FLC. See IEC 61158-3-3 for a
description of the functions.

Table A.3 — Primitives issued by DL-User to FLC

Primitive name Associated parameters

DL-DATA-ACK request Service_class,
D_addr,
D_SAP_index,
S_SAP_index,
DLSDU

DL-DATA request Service_class,
D_addr,
D_SAP_index,
S_SAP_index,
DLSDU

DL-DATA-REPLY request Service_class,
D_addr,
D_SAP_index,
S_SAP_index,
DLSDU

DL-MCT-DATA-REPLY request | Service_class,
D_addr
D_SAP_index,
S_SAP_index,
DLSDU,

DL-REPLY-UPDATE request Service_class,
S_SAP_index,
DLSDU,
Transmit_strategy,
Reference

DL-CS-TIME-EVENT request D_addr,
D_SAP_index,
S_SAP_index

DL-CS-CLOCK-VALUE request | D_addr,
D_SAP_index,
S_SAP_index,
DLSDU

Table A.4 shows all primitives issued by the FLC to the DL-User. See IEC 61158-3-3 for a
description of the functions.

Table A.4 — Primitives issued by FLC to DL-User

Primitive name Associated parameters

DL-DATA-ACK confirm Service_class,
D_addr,
D_SAP_index,
S_SAP_index,
DL_status

DL-DATA confirm Service_class,
D_addr,
D_SAP_index,
S_SAP_index,
DL_status

- 92 —

61158-4-3 © IEC:2007(E)

Primitive name

Associated parameters

DL-DATA-REPLY confirm

Service_class,
D_addr,
D_SAP_index,
S_SAP_index,
DLSDU,
DL_status

DL-REPLY-UPDATE confirm

Service_class,
S_SAP_index,
DL_status

DL-MCT-DATA-REPLY confirm

Service_class,
D_addr,
D_SAP_index,
S_SAP_index,
DLSDU,
DL_status

DL-CS-TIME-EVENT confirm

D_addr,
D_SAP_index,
S_SAP_index,

Send_delay_time,

DL_status

DL-CS-CLOCK-VALUE confirm

D_addr,
D_SAP_index,
S_SAP_index,
DL_status

DL-DATA-ACK indication

Service_class,
D_addr,
D_SAP_index,
S_addr,
S_SAP_index,
DLSDU

DL-DATA indication

Service_class,
D_addr,
D_SAP_index,
S_addr,
S_SAP_index,
DLSDU

DL-DATA-REPLY indication

Service_class,
D_addr,
D_SAP_index,
S_addr,
S_SAP_index,
DLSDU,
Update_status,
Reference

DL-MCT-DATA-REPLY indication

Service_class,
D_addr,
D_SAP_index,
S_addr,
S_SAP_index,
DLSDU,
Update_status,
Reference

DL-DXM-REPLY indication

Service_class,
D_addr,
D_SAP_index,
S_addr,
S_SAP_index,
DLSDU

DL-CS-CLOCK-VALUE indication

D_addr,
D_SAP_index,
S-addr,
S_SAP_index,
DLSDU,

Receive_delay_time

CS_status

61158-4-3 © IEC:2007(E) -93 -

A.4.1.2 Primitive exchanged between DL-User and DLM

Table A.5 shows all primitives issued by the DL-User to the DLM. See IEC 61158-3-3 for a
description of the functions.

Table A.5 — Primitives issued by DL-User to DLM

Primitive name Associated parameters
DLM-RESET request (none)
DLM-SET-VALUE request Variable_name(1 to n),

Index(1 to k),
Desired_value (1 to n)

DLM-GET-VALUE request Variable_name(1 to n),
Index(1 to k)
DLM-DLSAP-ACTIVATE request S_SAP_index,
Access,
Service_list

DLM-DLSAP-ACTIVATE-RESPONDER request | S_SAP_index,
Access,
DLSDU_length_list,
Indication_mode,
Publisher_enabled

DLM-DLSAP-ACTIVATE-SUBSCRIBER request | S_SAP_index,
DLSDU_length_list

DLM-DLSAP-DEACTIVATE request S_SAP_index

DLM-IDENT request DL_addr

DLM-DLSAP-STATUS request D_SAP_index,
DL_addr

Table A.6 shows all primitives issued by the DLM to the DL-User. See IEC 61158-3-3 for a
description of the functions.

—94 —

61158-4-3 © IEC:2007(E)

Table A.6 — Primitives issued by DLM to DL-User

Primitive name

Associated parameters

DLM-RESET confirm

DLM_Status

DLM-SET-VALUE confirm

Current_value(1 to n),
DLM_status(1 to n)

DLM-GET-VALUE confirm

Desired_value(1 to n),
DLM_status(1 to n)

DLM-EVENT indicate

Event/Fault
TSH

DLM-DLSAP-ACTIVATE confirm

S_SAP_index,
DLM_status

DLM-DLSAP-ACTIVATE-RESPONDER confirm

S_SAP_index,
DLM_status

DLM-DLSAP-ACTIVATE-SUBSCRIBER confirm

S_SAP_index,
DLM_status

DLM-DLSAP-DEACTIVATE confirm

S_SAP_index,
DLM_status

DLM-IDENT confirm

DL-addr,
Ident_list,
DLM_status

DLM-DLSAP-STATUS confirm

D_SAP_lIndex,

DL-addr,

Access,

Service_type(1 to n),
Role_in_service_list(1 to n),
DLM_status

A4.13

Parameters of FLC Primitives

Table A.7 shows all parameters used with primitives between the DL-User and the FLC.

Table A.7 — Parameters used with primitives exchanged between DL-User and FLC

Parameter name

Description

S_SAP_index Identifier of the local Service Access Point
D_SAP_index Identifier of a remote Service Access Point
D_addr Station address of the receiving DLE
S_addr Station address of the sending DLE

Service_class

Indicates priority of the service

DL_status

Status of the service execution

DLSDU

Data Unit from or to the DLS-user

Transmit_strategy

Operation mode of the update buffer (single = buffer is transmitted once, multiple =
buffer is transmitted repeated)

Reference

Reference to identify the DLSDU passed to the local DLE

Update_status

Indicates the presence of a DLSDU from a remote DLE in the update buffer

Send_delay_time

Protocol delay time between the invocaton of the Clock Synchronization service request

primitive and the transmission of the DLPDU

Receive_delay_time

Protocol delay time between the reception of the previous and the current DLPDU of
Clock Synchronization

CS_status

Status of the Clock Synchronization sequence

61158-4-3 © IEC:2007(E)

A4.1.4

Table A.8 shows all parameters used with primitives between the DL-User and the DLM.

Table A.8 — Parameters used with primitives exchanged between DL-User and DLM

— 05 —

Parameters of DLM primitives

Parameter name

Description

S_SAP_index

Identifier of the local Service Access Point

D_SAP_index

Identifier of a remote Service Access Point

Variable_name(1 to n)

List of DL variable names

Desired_value (1 to n)

List of DL variable values

Current_value (1 to n)

List of DL variable values

Access

Permission to use of a local SAP by one or several remote DLEs

Service_list

Type of services accepted at a local SAP

DLSDU_length_list

Maximum length of incoming or outgoing DLSDU at a local SAP

Indication_mode

Mode for Indication of received DLPDUs without user data

DLM_status

Status of the service execution

Event/Fault

Indicates the cause of an event or a fault

DL-addr

Station address of the local or a remote DLE

Ident_list

Specifies Vendor Name, Controller Type; HW/SW-Release

Service_type(1 to n)

Specifies the DL-services activated

Role_in_service_list(1
to n)

Specifies the role in service (initiator or responder or both)

A.4.2

The FLC forms the interface between DL Protocol Machines and DL-User for SDA, SDN,

State machine description

SRD, MSRD and CS services.

The DLM forms the

interface between DLM Protocol

management services.

Machines and DLM-User for

The FLC services are processed in the same way as the DLM services. For this reason the
DLM module is described in the same state machine as the FLC module and is contained in
the following description.

The services are all handled in the READY-State.

The service request will be validated first. A negative validation will result in a negative
confirmation. Otherwise the service will be put into the high or low priority service queue
according to the parameter service class. Services executed by MAC will be moved from the
request queues to the confirmation queues. All valid incoming services will be put into the
indication queue.

The set of SAP (de-)activate services are used to organise the SAP list. The Reply Update
services are used to put reply data in the service list.

Local Variables

The FLC / DLM does not use local variables. All variables which have to be accessed by the
FLC / DLM are contained in the DL Data Resource.

— 96 —

State Table Nomenclature

The standard suffixes

indication primitives, respectively. Service primitive names are entirely upper-case.

A.43

FLC / DLM Table

The FLC and DLM State Table is shown in Table A.9.

Table A.9 — FLC/DLM state table

61158-4-3 © IEC:2007(E)

‘.req”, “.cnf” and “.ind” are used to indicate the request, confirm and

Current
state

Event
Icondition
=action

Next state

READY

DLM-RESET.req

=
MAC_reset := FALSE
SRC_reset := FALSE
MAC_RESET.req
SRC_RESET.req

WAIT_RES
ET_CNF

WAIT_RES
ET_CNF

MAC_RESET.cnf
/SRC_reset

=

RESET_LIST
DLM-RESET.cnf

READY

WAIT_RES
ET_CNF

MAC_RESET.cnf
/'SRC_reset

=

MAC_reset := TRUE

WAIT_RES
ET_CNF

WAIT_RES
ET_CNF

SRC_RESET.cnf
IMAC_reset

=
RESET_LIST
DLM-RESET.cnf

READY

WAIT_RES
ET_CNF

SRC_RESET.cnf
'MAC_reset

=
SRC_reset := TRUE

WAIT_RES
ET_CNF

READY

DLM-GET-VALUE.req (Variable_name((1 to n), Index(1 to k)))
/ICHECK_PAR_READVALUE (Variable_name((1 to n), Index(1 to k)))
=

DLM_status (1 to n) := 1V

Current_value (1 to n) := NIL

DLM-GET-VALUE.cnf (Current_value(1 to n),DLM_status(1 to n))

READY

READY

DLM-GET-VALUE.req (Variable_name((1 to n), Index(1 to k)))
/CHECK_PAR_READVALUE (Variable_name((1 to n), Index(1 to k)))
=

Check_variable_names (Variable_name((1 to n), Index(1 to k)))
Set_current_values (Variable_name((1 to n), Index(1 to k)))
DLM-GET-VALUE.cnf (Current_value(1 to n),DLM_status(1 to n))

READY

READY

DLM-SET-VALUE.req (Variable_name((1 to n), Index(1 to k)), Desired_value(1 to n))
/NCHECK_PAR_SETVALUE (Variable_name((1 to n), Index(1 to k)), Desired_value(1
to n))

=
DLM_status (1 to n) := IV
DLM-SET-VALUE.cnf (DLM_status (1 to n))

READY

READY

DLM-SET-VALUE.req (Variable_name((1 to n), Index(1 to k)), Desired_value(1 to n))
/CHECK_PAR_SETVALUE (Variable_name((1 to n), Index(1 to k)), Desired_value(1
to n))

=

Set_variable_list (Variable_name((1 to n), Index(1 to k)), Desired_value(1 to n))
DLM-SET-VALUE.cnf (DLM_status (1 to n))

READY

61158-4-3 © IEC:2007(E) - 97 -

Current
state

Event
Icondition
=action

Next state

10

READY

MAC_BFAULT.ind (Fault_type, Tsh)

=
Event/Fault := Fault_type
DLM-EVENT.ind (Event/Fault, Tsh)

READY

11

READY

MAC_BFAULT.ind (Fault_type)

=
Event/Fault := Fault_type
DLM-EVENT.ind (Event/Fault)

READY

12

READY

MAC_LFAULT.ind (Fault_type)
=

Event/Fault := Fault_type
DLM-EVENT.ind (Event/Fault)

READY

13

READY

SRC_BFAULT.ind (Event_type)

=
Event/Fault := Event_type
DLM-EVENT.ind (Event/Fault)

READY

14

READY

SRC_LFAULT.ind (Event_type)

=
Event/Fault := Event_type
DLM-EVENT.ind (Event/Fault)

READY

15

READY

DLM-DLSAP-ACTIVATE.req (S_SAP_index, Access, Service_list)
/ICHECK_PAR_DLSAP

=
DLM_status := IV
DLM-DLSAP-ACTIVATE.cnf (S_SAP_index, DLM_status)

READY

16

READY

DLM-DLSAP-ACTIVATE.req (S_SAP_index, Access, Service_list)
/CHECK_PAR_DLSAP && ACTIVATED (S_SAP_index)

=

DLM_status := NO

DLM-DLSAP-ACTIVATE.cnf (S_SAP_index, DLM_status)

READY

17

READY

DLM-DLSAP-ACTIVATE.req (S_SAP_index, Access, Service_list)
/CHECK_PAR_DLSAP && !ACTIVATED (S_SAP_index)

=

SET_SAP_LIST (S_SAP_index, Access, Service_list) DLM_status := OK
DLM-DLSAP-ACTIVATE.cnf (S_SAP_index, DLM_status)

READY

18

READY

DLM-DLSAP-ACTIVATE-RESPONDER.req (S_SAP_index, Access,
DLSDU_length_list, Indication_mode, Publisher_enabled)
/ICHECK_PAR_DLSAP_RES

=

DLM_status := IV

DLM-DLSAP-ACTIVATE-RESPONDER.cnf (S_SAP_index, DLM_status)

READY

19

READY

DLM-DLSAP-ACTIVATE-RESPONDER.req (S_SAP_index, Access,
DLSDU_length_list, Indication_mode, Publisher_enabled)
/CHECK_PAR_DLSAP_RES && RACTIVATED (S_SAP_index) &&
Indication_modexUNCHANGED

=
DLM_status := NO
DLM-DLSAP-ACTIVATE-RESPONDER.cnf (S_SAP_index, DLM_status)

READY

20

READY

DLM-DLSAP-ACTIVATE-RESPONDER.req (S_SAP_index, Access,
DLSDU_length_list, Indication_mode, Publisher_enabled)
/CHECK_PAR_DLSAP_RES && !RACTIVATED (S_SAP_index) &&
Indication_mode=UNCHANGED

=

DLM_status := NO

DLM-DLSAP-ACTIVATE-RESPONDER.cnf (S_SAP_index, DLM_status)

READY

- 98 - 61158-4-3 © IEC:2007(E)

c t Event
No urren Icondition Next state
state .
=action
21 |READY DLM-DLSAP-ACTIVATE-RESPONDER.req (S_SAP_index, Access, READY
DLSDU_length_list, Indication_mode, Publisher_enabled)
/CHECK_PAR_DLSAP_RES &&
IRACTIVATED (S_SAP_index) &&
Indication_modeUNCHANGED
=
SET_RSAP_LIST (S_SAP_index, Access, DLSDU_length_list, Indication_mode,
Publisher_enabled)
DLM_status := OK
DLM-DLSAP-ACTIVATE-RESPONDER.cnf (S_SAP_index, DLM_status)
22 |READY DLM-DLSAP-ACTIVATE-RESPONDER.req (S_SAP_index, Access, READY
DLSDU_length_list, Indication_mode, Publisher_enabled)
/CHECK_PAR_DLSAP_RES &&
RACTIVATED (S_SAP_index) &&
Indication_mode=UNCHANGED &&
CHECK_SAP_LIST (S_SAP_index, DLSDU_length_list)
=
SET_RSAP_LIST (S_SAP_index, Access, DLSDU_length_list, Indication_mode,
Publisher_enabled)
DLM_status := OK
DLM-DLSAP-ACTIVATE-RESPONDER.cnf (S_SAP_index, DLM_status)
23 |READY DLM-DLSAP-ACTIVATE-RESPONDER.req (S_SAP_index, Access, READY
DLSDU_length_list, Indication_mode, Publisher_enabled)
/CHECK_PAR_DLSAP_RES &&
RACTIVATED (S_SAP_index) &&
Indication_mode=UNCHANGED &&
ICHECK_SAP_LIST (S_SAP_index, DLSDU_length_list)
=
DLM_status := NO
DLM-DLSAP-ACTIVATE-RESPONDER.cnf (S_SAP_index, DLM_status)
24 |READY DLM-DLSAP-ACTIVATE-SUBSCRIBER.req (S_SAP_index, DLSDU_length_list) READY
/ICHECK_PAR_DLSAP_SUB
=
DLM_status := IV
DLM-DLSAP-SUBSCRIBER.cnf (S_SAP_index, DLM_status)
25 |READY DLM-DLSAP-ACTIVATE-SUBSCRIBER.req (S_SAP_index, DLSDU_length_list) READY
/CHECK_PAR_DLSAP_SUB && SACTIVATED (S_SAP_index)
=
DLM_status := NO
DLM-DLSAP-SUBSCRIBER.cnf (S_SAP_index, DLM_status)
26 |READY DLM-DLSAP-ACTIVATE-SUBSCRIBER.req (S_SAP_index, DLSDU_length_list) READY
/CHECK_PAR_DLSAP_SUB &&
ISACTIVATED (S_SAP_index)
=
SET_SSAP_LIST (S_SAP_index, DLSDU_length_list)
DLM_status := OK
DLM-DLSAP-SUBSCRIBER.cnf (S_SAP_index, DLM_status)
27 |READY DLM-DLSAP-DEACTIVATE.req (S_SAP_index) READY
/ICHECK_PAR_DLSAP_DEACT
=
DLM_status := IV
DLM-DLSAP-DEACTIVATE.cnf (S_SAP_index, DLM_status)
28 |READY DLM-DLSAP-DEACTIVATE.req (S_SAP_index) READY
/CHECK_PAR_DLSAP_DEACT && !ACTIVATED (S_SAP_index)
=
DLM_status := NO
DLM-DLSAP-DEACTIVATE.cnf (S_SAP_index, DLM_status)
29 |READY DLM-DLSAP-DEACTIVATE.req (S_SAP_index) READY

/CHECK_PAR_DLSAP_DEACT && ACTIVATED (S_SAP_index)
=

RESET_SAP_LIST (S_SAP_index)

DLM_status := OK

DLM-DLSAP-DEACTIVATE.cnf (S_SAP_index, DLM_status)

61158-4-3 © IEC:2007(E) -99 -

Current
state

Event
Icondition
=action

Next state

30

READY

DLM-DLSAP-STATUS.req (D_SAP_index, D_addr)
/ICHECK_PAR_STATUS

=
Access := NIL

Service_list (1 to n) := NIL

Role_in_service_list (1 to n) := NIL

DLM_status := IV

DLM-DLSAP-STATUS.cnf (D_SAP_index, D_addr, Access, Service_type (1 to n),
Role_in_service_list (1 to n), DLM_status)

READY

31

READY

DLM-DLSAP-STATUS.req (D_SAP_index, D_addr)
/CHECK_PAR_STATUS &&

D_addr = Variables.TS &&
SAP_List[D_SAP_index] = NIL

=

Access := NIL

Service_list (1 to n) := NIL

Role_in_service_list (1 to n) := NIL

DLM_status := LR

DLM-DLSAP-STATUS.cnf (D_SAP_index, D_addr, Access, Service_type (1 to n),
Role_in_service_list (1 to n), DLM_status)

READY

32

READY

DLM-DLSAP-STATUS.req (D_SAP_index, D_addr)
/CHECK_PAR_STATUS &&

D_addr = Variables.TS &&

SAP_List # NIL[D_SAP_index]

=

Write_SAPstatus_list()

DLM_status := OK

DLM-DLSAP-STATUS.cnf (D_SAP_index, D_addr, Access, Service_type (1 to n),
Role_in_service_list (1 to n), DLM_status)

READY

33

READY

DLM-IDENT.req (D_addr)

/ICHECK_PAR_IDENT

=

Ident_list := NIL

DLM_status := IV

DLM-IDENT.cnf (D_addr, Ident_list, DLM_status)

READY

34

READY

DLM-IDENT.req (D_addr)
/CHECK_PAR_IDENT &&
D_addr = Variables.TS &&
Ident_List = NIL

=
Ident_list := NIL

DLM_status := LR

DLM-IDENT.cnf (D_addr, Ident_list, DLM_status)

READY

35

READY

DLM-IDENT.req (D_addr)

/CHECK_PAR_IDENT &&

D_addr = Variables.TS &&

Ident_List = NIL

=

Write_ident_list()

DLM_status := OK

DLM-IDENT.cnf (D_addr, Ident_list, DLM_status)

READY

36

READY

DLM-IDENT.req (D_addr)

/CHECK_PAR_IDENT &&

Ident_Pending = TRUE &&

D_addr # Variables.TS

=

Ident_list := NIL

DLM_status := LR

DLM-IDENT.cnf (D_addr, Ident_list, DLM_status)

READY

-100 - 61158-4-3 © IEC:2007(E)

c t Event
No urren Icondition Next state
state .
=action

37 |[READY DLM-IDENT.req (D_addr) READY

/CHECK_PAR_IDENT &&
Ident_Pending = FALSE &&
D_addr # Variables.TS

=
Ident_Pending := TRUE
PUT_LREQ (IDENT)

38 |[READY DL-DATA.req (Service_class, D_Addr, D_SAP_index, S_SAP_index, DLSDU) READY
/ICHECK_PAR_SDN
=
DL_status := IV
DL-DATA.cnf (Service_class, D_addr, D_SAP_index, S_SAP_index, DL_status)

39 [READY DL-DATA.req (Service_class, D_Addr, D_SAP_index, S_SAP_index, DLSDU) READY
/CHECK_PAR_SDN && !CHECK_SAP(Service_class, S_SAP_index, SDN)
=
DL_status := LS
DL-DATA.cnf (Service_class, D_addr, D_SAP_index, S_SAP_index, DL_status)

40 |READY DL-DATA.req (Service_class, D_Addr, D_SAP_index, S_SAP_index, DLSDU) READY
/CHECK_PAR_SDN && CHECK_SAP(Service_class, S_SAP_index, SDN) &&
IRESOURCE(S_SAP_index, DLSDU.Len)
=
DL_status := LR
DL-DATA.cnf (Service_class, D_addr, D_SAP_index, S_SAP_index, DL_status)

41 |READY DL-DATA.req (Service_class, D_Addr, D_SAP_index, S_SAP_index, DLSDU) READY
/CHECK_PAR_SDN && CHECK_SAP(Service_class, S_SAP_index, SDN) &&
RESOURCE(S_SAP_index, DLSDU.Len) && Service_class=high
=
PUT_HREQ (SDN_H)

42 |READY DL-DATA.req (Service_class, D_Addr, D_SAP_index, S_SAP_index, DLSDU) READY
/CHECK_PAR_SDN && CHECK_SAP(Service_class, S_SAP_index, SDN) &&
RESOURCE(S_SAP_index, DLSDU.Len) && Service_class=low
=
PUT_LREQ (SDN_L)

43 |READY DL-DATA-ACK.req (Service_class, D_addr, D_SAP_index, S_SAP_index, DLSDU) READY
/'CHECK_PAR_SDA
=
DL_status := IV
DL-DATA-AcCK.cnf (Service_class, D_addr, D_SAP_index, S_SAP_index, DL_status)

44 |READY DL-DATA-ACK.req (Service_class, D_addr, D_SAP_index, S_SAP_index, DLSDU) READY
/CHECK_PAR_SDA && |CHECK_SAP(Service_class, S_SAP_index, SDA)
=
DL_status := LS
DL-DATA-AcK.cnf (Service_class, D_addr, D_SAP_index, S_SAP_index, DL_status)

45 |READY DL-DATA-ACK.req (Service_class, D_addr, D_SAP_index, S_SAP_index, DLSDU) READY
/CHECK_PAR_SDA && CHECK_SAP(Service_class, S_SAP_index, SDA) &&
IRESOURCE(S_SAP_index, DLSDU.Len)
=
DL_status := LR
DL-DATA-AcK.cnf (Service_class, D_addr, D_SAP_index, S_SAP_index, DL_status)

46 |READY DL-DATA-ACK.req (Service_class, D_addr, D_SAP_index, S_SAP_index, DLSDU) READY
/CHECK_PAR_SDA && CHECK_SAP(Service_class, S_SAP_index, SDA) &&
RESOURCE(S_SAP_index, DLSDU.Len) && Service_class = high
=
PUT_HREQ (SDA_H)

47 |READY DL-DATA-ACK.req (Service_class, D_addr, D_SAP_index, S_SAP_index, DLSDU) READY

/CHECK_PAR_SDA && CHECK_SAP(Service_class, S_SAP_index, SDA) &&
RESOURCE(S_SAP_index, DLSDU.Len) && Service_class = low

=

PUT_LREQ (SDA_L)

61158-4-3 © IEC:2007(E) -101 -

c t Event
No urren Icondition Next state
state .
=action
48 |READY DL-DATA-REPLY.req (Service_class, D_addr, D_SAP_index, S_SAP_index, DLSDU) |READY
/ICHECK_PAR_REPLY
=
DL_status := IV
DL-DATA-REPLY.cnf (Service_class, D_addr, D_SAP_index, S_SAP_index, DLSDU,
DL_status)
49 |READY DL-DATA-REPLY.req (Service_class, D_addr, D_SAP_index, S_SAP_index, DLSDU) |READY
/CHECK_PAR_REPLY && |CHECK_SAP (Service_class, S_SAP_index, SRD)
=
DL_status := LS
DL-DATA-REPLY.cnf (Service_class, D_addr, D_SAP_index, S_SAP_index, DLSDU,
DL_status)
50 |READY DL-DATA-REPLY.req (Service_class, D_addr, D_SAP_index, S_SAP_index, DLSDU) [READY
/CHECK_PAR_REPLY && CHECK_SAP (Service_class, S_SAP_index, SRD) &&
IRESOURCE (S_SAP_index, DLSDU.Len)
=
DL_status := LR
DL-DATA-REPLY.cnf (Service_class, D_addr, D_SAP_index, S_SAP_index, DLSDU,
DL_status)
51 |READY DL-DATA-REPLY.req (Service_class, D_addr, D_SAP_index, S_SAP_index, DLSDU) [READY
/CHECK_PAR_REPLY && CHECK_SAP (Service_class, S_SAP_index, SRD) &&
RESOURCE (S_SAP_index, DLSDU.Len) && Service_class=high
=
PUT_HREQ (SRD_H)
52 [READY DL-DATA-REPLY.req (Service_class, D_addr, D_SAP_index, S_SAP_index, DLSDU) |READY
/CHECK_PAR_REPLY && CHECK_SAP (Service_class, S_SAP_index, SRD) &&
RESOURCE (S_SAP_index, DLSDU.Len) && Service_class=low
=
PUT_LREQ (SRD_L)
53 [READY DL-MCT-DATA-REPLY.req (Service_class, D_addr, D_SAP_index, S_SAP_index, READY
DLSDU)
/ICHECK_PAR_REPLY
=
DL_status := IV
DL-MCT-DATA-REPLY.cnf (Service_class, D_addr, D_SAP_index, S_SAP_index,
DLSDU, DL_status)
54 [READY DL-MCT-DATA-REPLY.req (Service_class, D_addr, D_SAP_index, S_SAP_index, READY
DLSDU)
/CHECK_PAR_REPLY && |CHECK_SAP (Service_class, S_SAP_index, SRD)
=
DL_status := LS
DL-MCT-DATA-REPLY.cnf (Service_class, D_addr, D_SAP_index, S_SAP_index,
DLSDU, DL_status)
55 [READY DL-MCT-DATA-REPLY.req (Service_class, D_addr, D_SAP_index, S_SAP_index, READY
DLSDU)
/CHECK_PAR_REPLY && CHECK_SAP (Service_class, S_SAP_index, SRD) &&
IRESOURCE (S_SAP_index, DLSDU.Len)
=
DL_status := LR
DL-MCT-DATA-REPLY.cnf (Service_class, D_addr, D_SAP_index, S_SAP_index,
DLSDU, DL_status)
56 |READY DL-MCT-DATA-REPLY.req (Service_class, D_addr, D_SAP_index, S_SAP_index, READY
DLSDU)
/CHECK_PAR_REPLY && CHECK_SAP (Service_class, S_SAP_index, SRD) &&
RESOURCE (S_SAP_index, DLSDU.Len) && Service_class=high
=
PUT_HREQ (MSRD_H)
57 [READY DL-MCT-DATA-REPLY.req (Service_class, D_addr, D_SAP_index, S_SAP_index, READY

DLSDU)

/CHECK_PAR_REPLY && CHECK_SAP (Service_class, S_SAP_index, SRD) &&
RESOURCE (S_SAP_index, DLSDU.Len) && Service_class=low

=

PUT_HREQ (MSRD_L)

-102 - 61158-4-3 © IEC:2007(E)

c t Event
No urren Icondition Next state
state .
=action
58 |READY DL-REPLY-UPDATE.req (Service_class, S_SAP_index, DLSDU, Transmit_strategy, READY
Reference)
/ITCHECK_PAR_UPDATE
=
DL_status := IV
DL-REPLY-UPDATE.cnf (S_SAP_index, DL_status)
59 |READY DL-REPLY-UPDATE.req (Service_class, S_SAP_index, DLSDU, Transmit_strategy, READY
Reference)
/CHECK_PAR_UPDATE && !CHECK_SAP (Service_class, S_SAP_index, SRD)
=
DL_status := LS
DL-REPLY-UPDATE.cnf (S_SAP_index, DL_status)
60 [READY DL-REPLY-UPDATE.req (Service_class, S_SAP_index, DLSDU, Transmit_strategy, READY
Reference)
/ CHECK_PAR_UPDATE && CHECK_SAP (Service_class, S_SAP_index, SRD) &&
IRESOURCE (S_SAP_index, DLSDU.Len)
=
DL_status := LR
DL-REPLY-UPDATE.cnf (S_SAP_index, DL_status)
61 [READY DL-REPLY-UPDATE.req (Service_class, S_SAP_index, DLSDU, Transmit_strategy, READY
Reference)
/CHECK_PAR_UPDATE && CHECK_SAP (Service_class, S_SAP_index, SRD) &&
RESOURCE (S_SAP_index, DLSDU.Len) && Service_class=high
=
DL_status = OK
PUT_HUBUFFER (S_SAP_index)
DL-REPLY-UPDATE.cnf (S_SAP_index, DL_status)
62 |READY DL-REPLY-UPDATE.req (Service_class, S_SAP_index, DLSDU, Transmit_strategy, READY
Reference)
/CHECK_PAR_UPDATE && CHECK_SAP (Service_class, S_SAP_index, SRD) &&
RESOURCE (S_SAP_index, DLSDU.Len) && Service_class=low
=
DL_status = OK
PUT_LUBUFFER (S_SAP_index)
DL-REPLY-UPDATE.cnf (S_SAP_index, DL_status)
63 |READY /C_List.Num_entry=0 && C_List.First_entry.Service = IDENT READY
=
Ident_pending := FALSE
GET_IDENT_CNF()
DLM-IDENT.cnf (D_addr, Ident_list, DLM_status)
64 [READY /C_List.Num_entry=0 && C_List.First_entry.Service = DLSAP-STATUS READY
=
Status_pending := FALSE
GET_DLSAPSTATUS_CNF()
DLM-DLSAP-STATUS.cnf (D_SAP_index, D_addr, Access, Service_type (1 to n),
Role_in_service_list (1 to n), DLM_status)
65 |READY /C_List.Num_entry=0 && C_List.First_entry.Function = SDA_H || READY
C_List.First_entry.Function = SDA_L
=
GET_SDA/SDN_CNF()
DL-DATA-AcK.cnf (Service_class, D_addr, D_SAP_index, S_SAP_index, DL_status)
66 |READY /C_List.Num_entry=0 && C_List.First_entry.Service = SDN READY
=
GET_SDA/SDN_CNF()
DL-DATA.cnf (Service_class, D_addr, D_SAP_index, S_SAP_index, DL_status)
67 |READY /C_List.Num_entry=0 && C_List.First_entry.Service = SRD READY

=

GET_SRD_CNF()

DL-DATA-REPLY.cnf (Service_class, D_addr, D_SAP_index, S_SAP_index, DLSDU,
DL_status)

61158-4-3 © IEC:2007(E) -103 -

c t Event
No urren Icondition Next state
state .
=action
68 [READY /C_List.Num_entry=0 && C_List.First_entry.Service = MSRD READY
=
GET_SRD_CNF()
DL-MCT-DATA-REPLY.cnf (Service_class, D_addr, D_SAP_index, S_SAP_index,
DLSDU, DL_status)
69 [READY /I_List.Num_entry=0 && I_List_entry.First_entry.FC.Function = SDA_H || READY
I_List.First_entry.FC.Function = SDA_L
=
GET_SDA/SDN_IND()
DL-DATA-ACK.ind (Service_class, D_addr, D_SAP_index, S_addr, S_SAP_index,
DLSDU)
70 |READY /I_List.Num_entry=0 && I_List_entry.First_entry.FC.Function= SDN_H || READY
|_List.First_entry.FC.Function = SDN_L
=
GET_SDA/SDN_IND()
DL-DATA.ind (Service_class, D_addr, D_SAP_index, S_addr, S_SAP_index, DLSDU)
71 |READY /I_List.Num_entry=0 && READY
|_List.First_entry.DA # 127 &&
I_List_entry.First_entry.FC.Function= SRD_H ||
|_List.First_entry.FC.Function = SRD_L
=
GET_SRD_IND()
DL-DATA-REPLY.ind (Service_class, D_addr, D_SAP_index, S_addr, S_SAP_index,
DLSDU, Update_status, Reference)
72 |READY /I_List.Num_entry=0 && READY
|_List.First_entry.DA = 127&&
|_List_entry.First_entry.FC.Function= SRD_H ||
I_List.First_entry.FC.Function = SRD_L
=
GET_DXM_IND()
DL-DXM-REPLY.ind (Service_class, D_addr, D_SAP_index, S_addr, S_SAP_index,
DLSDU)
73 |READY /I_List.Num_entry=0 && READY
|_List.First_entry.DA # 127 &&
I_List_entry.First_entry.FC.Function= MSRD_H ||
|_List.First_entry.FC.Function = MSRD_L
=
GET_SRD_IND()
DL-MCT-DATA-REPLY.ind (Service_class, D_addr, D_SAP_index, S_addr,
S_SAP_index, DLSDU, Update_status, Reference)
101 |READY DL-CS-TIME-EVENT.req(D_addr, D_SAP_index, S_SAP_index) READY
/Tm_State==STE
&!CHECK_PAR_TE
=
DL_status:=IV
DL-CS-TIME-EVENT.cnf (D_addr, D_SAP_index, S_SAP_index, DL_status)
Tm_State:=STE
102 |READY DL-CS-TIME-EVENT.req(D_addr, D_SAP_index, S_SAP_index) READY
/Tm_State==STE
&CHECK_PAR_TE && !CHECK_SAP(High, CS, TE/CV)
=
DL_status:=LS
DL-CS-TIME-EVENT.cnf (D_addr, D_SAP_index, S_SAP_index, DL_status)
Tm_State:=STE
103 |READY DL-CS-TIME-EVENT.req(D_addr, D_SAP_index, S_SAP_index) READY

/Tm_State==STE
&CHECK_PAR_TE && CHECK_SAP(High, CS, TE/CV) && 'RESOURCE(CS)

=

DL_status:=LR

DL-CS-TIME-EVENT.cnf (D_addr, D_SAP_index, S_SAP_index, DL_status)
Tm_State:=STE

~ 104 -

61158-4-3 © IEC:2007(E)

Current
state

Event
Icondition
=action

Next state

104

READY

DL-CS-TIME-EVENT.req(D_addr, D_SAP_index, S_SAP_index)
/Tm_State==STE

&CHECK_PAR_TE && CHECK_SAP(High, CS, TE/CV) && RESOURCE(CS)
=

TSDT.start(2*Tcsi);

PUT_HREQ (TE)

Tm_State:=W_STE

READY

105

READY

DL-CS-CLOCK-VALUE.req (D_addr, D_SAP_index, S_SAP_index, CS_list)
/Tm_State==STE

=

DL_status:=SV

DL-CS-CLOCK-VALUE.cnf (D_addr, D_SAP_index, S_SAP_index, DL_status)
Tm_State:=STE

READY

106

READY

/Tm_State==STE
&Tr_State # W_TE && TM < TS

=
TSDT.start(4*Tcsi);
Tm_State:=CONFLICT

READY

107

READY

/Tm_State==W_STE

&C_List.Num_entry=0 && C_List.First_entry.Service=TE &&
C_List.First_entry.R_status=0OK

=

Send_delay_time := 2*Tcsi-TSDT.cv;

TSDT.stop;

GET_TE_CNF();

Status:=0K

DL-CS-TIME-EVENT.cnf (D_addr, D_SAP_index, S_SAP_index, Send_delay_time,
DL_status)

Tm_State:=SCV

READY

108

READY

/Tm_State==W_STE
&C_List.Num_entry=0 && C_List.First_entry.Service=TE &&
C_List.First_entry.R_statuszOK

=

Send_delay_time := 2*Tcsi-TSDT.cv;

TSDT.stop;

GET_TE_CNF();

Status:=DS

DL-CS-TIME-EVENT.cnf (D_addr, D_SAP_index, S_SAP_index, Send_delay_time,
DL_status)

Tm_State:=STE

READY

109

READY

DL-CS-TIME-EVENT.req(D_addr, D_SAP_index, S_SAP_index)
/Tm_State==W_STE

=

Send_delay_time := 0

DL_status:=SV

DL-CS-TIME-EVENT.cnf (D_addr, D_SAP_index, S_SAP_index, Send_delay_time,
DL_status)

Tm_State:=W_STE

READY

110

READY

DL-CS-CLOCK-VALUE.req (D_addr, D_SAP_index, S_SAP_index, CS_list)
/Tm_State==W_STE

=

DL_status:=SV

DL-CS-CLOCK-VALUE.cnf (D_addr, D_SAP_index, S_SAP_index, DL_status)
Tm_State:=W_STE

READY

111

READY

/Tm_State==W_STE
&Tr_State # W_TE && TM < TS

=
TSDT.start(4*Tcsi);
Tm_State:=W_CC

READY

61158-4-3 © IEC:2007(E) - 105 -

Current
state

Event
Icondition
=action

Next state

112

READY

/Tm_State==W_STE
&TSDT expired

=
TSDT.start(4*Tcsi);
Tm_State:=W_DS

READY

113

READY

DL-CS-CLOCK-VALUE.req (D_addr, D_SAP_index, S_SAP_index, CS_list)
/Tm_State==SCV

&!CHECK_PAR_CV

=

DL_status:=IV

DL-CS-CLOCK-VALUE.cnf (D_addr, D_SAP_index, S_SAP_index, DL_status)
Tm_State:=SCV

READY

114

READY

DL-CS-CLOCK-VALUE.req (D_addr, D_SAP_index, S_SAP_index, CS_list)
/Tm_State==SCV
&CHECK_PAR_CV && !CHECK_SAP(High, CS, TE/CV)

=
DL_status:=LS

DL-CS-CLOCK-VALUE.cnf (D_addr, D_SAP_index, S_SAP_index, DL_status)
Tm_State:=SCV

READY

115

READY

DL-CS-CLOCK-VALUE.req (D_addr, D_SAP_index, S_SAP_index, CS_list)
/Tm_State==SCV
&CHECK_PAR_CV && CHECK_SAP(High, CS, TE/CV) && IRESOURCE(CS)

=
DL_status:=LR

DL-CS-CLOCK-VALUE.cnf (D_addr, D_SAP_index, S_SAP_index, DL_status)
Tm_State:=SCV

READY

116

READY

DL-CS-CLOCK-VALUE.req (D_addr, D_SAP_index, S_SAP_index, CS_list)
/Tm_State==SCV

&CHECK_PAR_CV && CHECK_SAP(High, CS, TE/CV) && RESOURCE(CS)
=

DLSDU:=CS_list;

TSDT.start(2*Tcsi);

PUT_HREQ (CV)

Tm_State:=W_SCV

READY

117

READY

DL-CS-TIME-EVENT.req(D_addr, D_SAP_index, S_SAP_index)
/Tm_State==SCV

=

Send_delay_time := 0;

DL_status:=SV

DL-CS-TIME-EVENT.cnf (D_addr, D_SAP_index, S_SAP_index, Send_delay_time,
DL_status)

Tm_State:=SCV

READY

118

READY

/Tm_State==SCV
&Tr_State # W_TE & TM < TS

=
TSDT.start(4*Tcsi);

Tm_State:=CONFLICT

READY

119

READY

/Tm_State==W_SCV

&C_List.Num_entry=0 && C_List.First_entry.Service=CV &&
C_List.First_entry.R_status=0OK

=

GET_CV_CNF();

Status:=0OK

DL-CS-CLOCK-VALUE.cnf (D_addr, D_SAP_index, S_SAP_index, DL_status)
Tm_State:=STE

READY

- 106 - 61158-4-3 © IEC:2007(E)

c t Event
No urren Icondition Next state
state .
=action
120 [READY /Tm_State==W_SCV READY

&C_List.Num_entry=0 && C_List.First_entry.Service=CV &&
C_List.First_entry.R_statuszOK

=

GET_CV_CNF();

Status:=DS

DL-CS-CLOCK-VALUE.cnf (D_addr, D_SAP_index, S_SAP_index, DL_status)
Tm_State:=STE

121 [READY DL-CS-TIME-EVENT.req(D_addr, D_SAP_index, S_SAP_index) READY
/Tm_State==W_SCV

=
DL_status:=SV

DL-CS-CLOCK-VALUE.cnf (D_addr, D_SAP_index, S_SAP_index, DL_status)
Tm_State:=W_SCV

122 |READY DL-CS-CLOCK-VALUE.req (D_addr, D_SAP_index, S_SAP_index, CS_list) READY
/Tm_State==W_SCV

=

Send_delay_time := 0;

DL_status:=SV

DL-CS-TIME-EVENT.cnf (D_addr, D_SAP_index, S_SAP_index, Send_delay_time,
DL_status)

Tm_State:=W_SCV

123 |READY |/Tm_State==w_scV READY
&Tr_State =W _TE && TM < TS

=
TSDT.start(4*Tcsi);
Tm_State:=W_CC

124 [READY /Tm_State==W_STE READY
&TSDT expired

=
TSDT.start(4*Tcsi);
Tm_State:=W_DS

125 |READY DL-CS-TIME-EVENT.req(D_addr, D_SAP_index, S_SAP_index) READY
/Tm_State==CONFLICT

=
Send_delay_time := 0;

DL_status:=SV

DL-CS-TIME-EVENT.cnf (D_addr, D_SAP_index, S_SAP_index, Send_delay_time,
DL_status)

Tm_State:=CONFLICT

126 [READY DL-CS-CLOCK-VALUE.req (D_addr, D_SAP_index, S_SAP_index, CS_list) READY
/Tm_State==CONFLICT

=

DL_status:=SV

DL-CS-CLOCK-VALUE.cnf (D_addr, D_SAP_index, S_SAP_index, DL_status)
Tm_State:=CONFLICT

127 |READY [/Tm_State==CONFLICT READY
&Tr_State =W _TE && TM < TS

=
TSDT.start(4*Tcsi)
Tm_State:=CONFLICT

128 |READY /Tm_State==CONFLICT READY
&TSDT expired
=

Tm_State:=STE

61158-4-3 © IEC:2007(E) -107 -

Current
state

Event
Icondition
=action

Next state

129

READY

/Tm_State==W_CC

&C_List.Num_entry=0 && C_List.First_entry.Service=TE

=

Send_delay_time := 0;

GET_TE_CNF();

Status:=SV

DL-CS-TIME-EVENT.cnf (D_addr, D_SAP_index, S_SAP_index, Send_delay_time,
DL_status)

Tm_State:=CONFLICT

READY

130

READY

/Tm_State==W_CC

&C_List.Num_entry=0 && C_List.First_entry.Service=CV

=

GET_CV_CNF();

Status:=SV

DL-CS-CLOCK-VALUE.cnf (D_addr, D_SAP_index, S_SAP_index, DL_status)
Tm_State:=CONFLICT

READY

131

READY

/Tm_State==W_DS
&C_List.Num_entry=0 && C_List.First_entry.Service=TE

=

GET_TE_CNF();

Status:=DS

DL-CS-TIME-EVENT.cnf (D_addr, D_SAP_index, S_SAP_index, DL_status)
Tm_State:=STE

READY

132

READY

/Tm_State==W_DS

&C_List.Num_entry=0 && C_List.First_entry.Service=CV

=

GET_CV_CNF();

Status:=DS

DL-CS-CLOCK-VALUE.cnf (D_addr, D_SAP_index, S_SAP_index, DL_status)
Tm_State:=STE

READY

201

READY

/Tr_State==W_TE
&lI_List.Num_entry=0 && I_List_entry.First_entry.FC.Function = TE

=
TRDT.start(2*Tcsi);
GET_TE/CV_IND();
TM:=S_addr
Tr_State:=W_CV

READY

202

READY

/Tr_State==W_TE

&lI_List.Num_entry=0 && I_List_entry.First_entry.FC.Function = CV
=

GET_TE/CV_IND()

Tr_State:=W_TE

READY

203

READY

/Tr_State==W_CV
&l_List.Num_entry=0 && I_List_entry.First_entry.FC.Function = TE
&& I_List_entry.First_entry.SA = TM

=
GET_TE/CV_IND()
Tr_State:=W_CV

READY

204

READY

/Tr_State==W_CV
&l_List.Num_entry=0 && I_List_entry.First_entry.FC.Function = TE
&& I_List_entry.First_entry.SA = TM

=

TRDT.stop;

Receive_delay_time := 2*Tcsi — TRDT.cyv;

CS_list := DLSDU;

CS_status:=SV;

GET_TE/CV_IND()

DL-CS-CLOCK-VALUE.ind (D_addr, D_SAP_index, S_addr, S_SAP_index, CS_list,
CS_status, Receive_delay_time)

Tr_State:=W_TE

READY

- 108 — 61158-4-3 © IEC:2007(E)

c t Event
No urren Icondition Next state
state .
=action
205 [READY /Tr_State==W_CV READY

&lI_List.Num_entry#0 && I_List_entry.First_entry.FC.Function = CV
&& |_List_entry.First_entry.SA # TM

=
GET_TE/CV_IND()
Tr_State:=W_CV

206 [READY [Tr_State==W_CV READY

&l_List.Num_entry=0 && I_List_entry.First_entry.FC.Function = CV
&& I_List_entry.First_entry.SA = TM

=

TRDT.stop;

Receive_delay_time := 2*Tcsi — TRDT.cyv;

CS_list := DLSDU;

CS_status:=SV;

GET_TE/CV_IND()

DL-CS-CLOCK-VALUE.ind (D_addr, D_SAP_index, S_addr, S_SAP_index, CS_list,
CS_status, Receive_delay_time)

Tr_State:=W_TE

207 |READY /Tr_State==W_CV READY
&TCSI expired

=

Receive_delay_time := 0;

CS_list := NULL;

CS_status:=SV

DL-CS-CLOCK-VALUE.ind (D_addr, D_SAP_index, S_addr, S_SAP_index, CS_list,
CS_status, Receive_delay_time)

Tr_State:=W_TE

61158-4-3 © IEC:2007(E)

A.4.4 Functions

- 109 -

The FLC and DLM Functions are summarized in Table A.10.

Table A.10 — FLC / DLM function table

Function name

Operations

ACTIVATED Check that SAP is activated by setting its entry to valid value.
(SAP_List(S_SAP_index) # NIL
S_SAP_index
)
RACTIVATED Check that SAP is activated as Responder.
(
S_SAP_index
)
SACTIVATED Check that SAP is activated as Subscriber.
S_SAP_index

)

CHECK_PAR_DLSAP

Check that all parameters of Service DLM-DLSAP-ACTIVATE.req are valid.
Number of paramters must be 3.

S_SAP_index: 0..63, NIL

Access: 1..127

Service_list-Service_list_length: 1..(1 + 4 x 3)

Service_list.n-th service_activate: “SDA” or “SDN” or “SRD”

Service_list.n-th role_in_service: “INITIATOR” or “RESPONDER” (SDA, SDN
only) or “BOTH” (SDA, SDN only)

Service_list. nth DLSDU_length_list (1 to 4): 0..246

CHECK_PAR_DLSAP_DEACT

Check that all parameters of Service DLM-DLSAP-ACTIVATE-
RESPONDER.req are valid.

Number of paramters must be 1.

S_SAP_index: 0..63, NIL

CHECK_PAR_DLSAP_SUB

Check that all parameters of Service DLM-DLSAP-ACTIVATE-
RESPONDER.req are valid.

Number of paramters must be 2.

S_SAP_index: 0..62, NIL

DLSDU_length_list (1 to 2): 0..246

CHECK_PAR_DLSAP_RES

Check that all parameters of Service DLM-DLSAP-ACTIVATE-
RESPONDER.req are valid.

Number of paramters must be 4.

S_SAP_index: 0..62, NIL

Access: 1..127

DLSDU_length_list (1 to 4): 0..246

Indication_mode: “ALL or “DATA” or “UNCHANGED”

CHECK_PAR_IDENT

Check that all parameters of Service DLM-IDENT.req are valid.
Number of paramters must be 1.
D_addr: 0..126

- 110 - 61158-4-3 © IEC:2007(E)

Function name

Operations

CHECK_PAR_READVALUE

Variable_name((1 to n),
Index(1 to k))

)

Check that the requested management variable names are valid.
Possible values for MAC sublayer are:
in_ring_desired

Data_rate
TS
Ttr
G
HSA
max_retry_limit
SYNCHT
Tct
Isochronous_mode
maxTsh
Tcsi
HW_Release
SW_Release
Trr
LMS
GAPL

Possible values for SRC sublayer are:
minTsdr
maxTsdr
Tsl
Tqui
Tset

Medium_redundancy
DLPDU_sent_count
Retry_count
DLPDU_sent_count_sr(1 to n)
Error_count(1 to n)

SD_count

SD_error_count

CHECK_PAR_SETVALUE

Variable_name((1 to n),
Index(1 to k))

Check that the requested management variable names are valid.
Possible values for MAC sublayer are:
in_ring_desired
Data_rate
TS
Ttr
G
HSA
max_retry_limit
SYNCHT
Tct
Isochronous_mode
maxTsh
Tesi
HW_Release
SW_Release
Possible values for SRC sublayer are:
minTsdr
maxTsdr
Tsl
Tqui
Tset
Medium_redundancy
DLPDU_sent_count
Retry_count
DLPDU_sent_count_sr(1 to n)
Error_count(1 to n)
SD_count
SD_error_count

CHECK_PAR_SDA

Check that all parameters of Service DL-DATA-ACK.req are valid.
Number of paramters must be 5.

Service_class: “high” or “low”

D_addr: 0..126

D_SAP_index: 0..62, NIL

S_SAP_index: 0..62, NIL

DLSDU.Len: 1..246

DLSDU.Data: according to DLSDU.Len

61158-4-3 © IEC:2007(E)

-111 -

Function name

Operations

CHECK_PAR_SDN

Check that all parameters of Service DL-DATA.req are valid.
Number of paramters must be 5.

Service_class: “high” or “low”

D_addr: 0..127

D_SAP_index: 0..63, NIL

S_SAP_index: 0..62, NIL

DLSDU.Len: 1..246

DLSDU.Data: according to DLSDU.Len

CHECK_PAR_STATUS

Check that all parameters of Service DLM-DLSAP-STATUS.req are valid.
Number of paramters must be 2.

DLSAP: 0..63, NIL, CS

D_addr: 0..126

CHECK_PAR_REPLY

Check that all parameters of Service DL-DATA-REPLY.req are valid.
Number of paramters must be 5.

Service_class: “high” or “low”

D_addr: 0..126

D_SAP_index: 0..62, NIL

S_SAP_index: 0..62, NIL

DLSDU.Len: 0..246

DLSDU.Data: according to DLSDU.Len

CHECK_PAR_UPDATE

Check that all parameters of Service DL-REPLY-UPDATE.req are valid.
Number of paramters must be 4.

Service_class: “high” or “low”

S_SAP_index: 0..62, NIL

DLSDU.Len: 0..246

DLSDU.Data: according to DLSDU.Len

Transmit_strategy: “SINGLE” or “MULTIPLE”

CHECK_PAR_TE

Check that all parameters of Service DL-CS-TIME-EVENT.req are valid.
Number of paramters must be 3.

D_addr = 127

D_SAP_index = CS

S_SAP_index = CS

CHECK_PAR_CV

Check that all parameters of Service DL-CS-CLOCK-VALUE.req are valid.
Number of paramters must be 4.

D_addr = 127

D_SAP_index = CS

S_SAP_index = CS

Length of DLSDU: 18

CHECK_SAP

(
Service_class,
S_SAP_index,
Function

)

Check that the SAP is activated to perform the current service request.
SAP_List(S_SAP_index) = NIL
SAP_List(S_SAP_index).Function_List_I contains combination
(Service_class, Function)

CHECK_SAP_LIST

S_SAP_index,
DLSDU_length_list
)

Check that the parameters of the service primitive conform to the settings of
the SAP.

DLSDU_length_list.Max_DLSDU_length_req_low =
SAP_List(S_SAP_index).Ubuffer.Low_buffer.DLSDU.Len)
DLSDU_length_list.Max_DLSDU_length_req_high =
SAP_List(S_SAP_index).Ubuffer.High_buffer.DLSDU.Len)
DLSDU_length_list.Max_DLSDU_length_ind_low =
SAP_List(S_SAP_index).Ibuffer.Low_len)
DLSDU_length_list.Max_DLSDU_length_ind_high =
SAP_List(S_SAP_index).lIbuffer.High_len)

Check_variable_names

Variable_name((1 to n),
Index(1 to k))

)

Check that the management variables are set to valid values.
LOOP for i from 1 to n for all variable names:
if Variables.Variable_name (i) = NIL
DLM_status (i) := NO
else
DLM_status (i) := OK

-112 - 61158-4-3 © IEC:2007(E)

Function name Operations
GET_DLSAPSTATUS_CNF Get a management service confirmation from the confirmation queue to
(MAC.

) C_List.Num_entry--

D_addr := C_List.First_Entry.DA

D_SAP_index := C_List.First_Entry.DSAP

retrieve Access from C_List.First_Entry.DLSDU.Data

retrieve Service_type (1 to n) from C_List.First_Entry.DLSDU.Data
retrieve Role_in_service_list (1 to n) from C_List.First_Entry.DLSDU.Data
DLM_status := C_List.First_Entry.R_Status

C_List.Remove()

GET_IDENT_CNF Get a management service confirmation from the confirmation queue to
(MAC.
) C_List.Num_entry--

D_addr := C_List.First_Entry.DA

Ident_list := C_List.First_Entry.DLSDU.Data
DLM_status := C_List.First_Entry.R_Status
C_List.Remove()

GET_SDA/SDN_CNF Get a service confirmation from the confirmation queue to MAC.

(C_List.Num_entry--

) if (C_List.First_Entry.FC.Function = "SDA_H" or "SDN_H") Service_class :=
high
if (C_List.First_Entry.FC.Function = "SDA_L" or "SDN_L") Service_class :=
low

D_addr := C_List.First_Entry.DA
D_SAP_index := C_List.First_Entry.DSAP
S_SAP_index := C_List.First_Entry.SSAP
DL_status := C_List.First_Entry.R_Status
C_List.Remove()

GET_SDA/SDN_IND Get a service indication from the indication queue to MAC.

(|_List.Num_entry--

) if (I_List.First_Entry.FC.Function = "SDA_H" or "SDN_H") Service_class :=
high
if (I_List.First_Entry.FC.Function = "SDA_L" or "SDN_L") Service_class :=
low

D_addr := |_List.First_Entry.DA
D_SAP_index := I_List.First_Entry. DSAP
S_addr := |_List.First_Entry.SA
S_SAP_index := |_List.First_Entry.SSAP
DLSDU := I_List.First_Entry.DLSDU
|_List.Remove()
SAP_List(S_SAP_index).Ibuffer.Insert()
SAP_List(S_SAP_index).lbuffer.Num_entry++

GET_SRD_CNF Get a service confirmation from the confirmation queue to MAC.
(C_List.Num_entry--
) if (C_List.First_Entry.FC.Function = "SRD_H") Service_class := high

if (C_List.First_Entry.FC.Function = "SRD_L") Service_class := low
D_addr := C_List.First_Entry.DA

D_SAP_index := C_List.First_Entry.DSAP

S_SAP_index := C_List.First_Entry.SSAP

DLSDU := C_List.First_Entry.DLSDU

DL_status := C_List.First_Entry.R_Status

C_List.Remove()

GET_SRD_IND Get a service indication from the indication queue to MAC.
(I_List.Num_Entry--
) if (I_List.First_Entry.FC.Function = "SRD_H") Service_class := high

if (I_List.First_Entry.FC.Function = "SRD_L") Service_class := low
D_addr := I_List.First_Entry.DA
D_SAP_index := |I_List.First_Entry.DSAP
S_addr := |_List.First_Entry.SA

S_SAP_index := |_List.First_Entry.SSAP
DLSDU :=|_List.First_Entry.DLSDU

R_Status := |_List.First_Entry.Update_status
Reference := |I_List.First_Entry.Reference
|_List.Remove()
SAP_List(S_SAP_index).Ibuffer.Insert()
SAP_List(S_SAP_index).lbuffer.Num_entry++

61158-4-3 © IEC:2007(E)

- 113 -

Function name

Operations

GET_DXM_IND

(
)

Get a service indication from the indication queue to MAC.

|_List.Num_entry--

if (I_List.First_Entry.FC.Function = "DH") Service_class := high
else Service_class := low

D_addr := |_List.First_Entry.DA

D_SAP_index := I_List.First_Entry. DSAP

S_addr := |_List.First_Entry.SA

S_SAP_index := |_List.First_Entry.SSAP

DLSDU := I_List.First_Entry.DLSDU

|_List.Remove()

SAP_List(S_SAP_index).Sbuffer.Insert()

SAP_List(S_SAP_index).Sbuffer.Num_entry++

GET_TE_CNF

Get a service confirmation from the confirmation queue to MAC.
C_List.Num_entry--

D_addr := C_List.First_Entry.DA

D_SAP_index := C_List.First_Entry.DSAP

S_SAP_index := C_List.First_Entry.SSAP

DL_status := C_List.First_Entry.R_Status

C_List.Remove()

GET_CV_CNF

Get a service confirmation from the confirmation queue to MAC.
C_List.Num_entry--

D_addr := C_List.First_Entry.DA

D_SAP_index := C_List.First_Entry.DSAP

S_SAP_index := C_List.First_Entry.SSAP

DL_status := C_List.First_Entry.R_Status

C_List.Remove()

GET_TE/CV_IND()

Get a service indication from the indication queue to MAC.
I_List.Num_entry--

D_addr := I_List.First_Entry.DA

D_SAP_index := CS

S_addr := |_List.First_Entry.SA

S_SAP_index := CS

DLSDU := I_List.First_Entry.DLSDU

I_List.Remove()

SAP_List(S_SAP_index).Ibuffer.Insert()
SAP_List(S_SAP_index).lbuffer.Num_entry++

Get a service indication from the indication queue to MAC.

PUT_HREQ
(

)

Function

Put a service request to the high prior service queue to MAC.
H_List.Insert()

H_List.First_Entry.DA := D_addr

H_List.First_Entry.DSAP := D_SAP_index
H_List.First_Entry.SSAP := S_SAP_index
H_List.First_Entry.FC.Frame_type := req
H_List.First_Entry.FC.Function := Function
H_List.First_Entry.DLSDU := DLSDU

H_List.Num_entry++

PUT_HUBUFFER
(

Put a service request to the high prior update buffer of the LSAP.
SAP_List(S_SAP_index).Ubuffer.High_reference := Reference

S_SAP_index SAP_List(S_SAP_index).Ubuffer.High_transmit := Transmit_strategy
) SAP_List(S_SAP_index).Ubuffer.High_buffer := DLSDU
PUT_LREQ Put a service request to the low prior service queue to MAC.
(L_List.Insert()

Function L_List.First_Entry.DA := D_addr

)

L_List.First_Entry.DSAP := D_SAP_index
L_List.First_Entry.SSAP := S_SAP_index
L_List.First_Entry.FC.Frame_type := req
L_List.First_Entry.FC.Function := Function
L_List.First_Entry.DLSDU := DLSDU
L_List.Num_entry++

PUT_LUBUFFER
(

)

S_SAP_index

Put a service request to the low prior update buffer of the LSAP.
SAP_List(S_SAP_index).Ubuffer.Low_reference := Reference
SAP_List(S_SAP_index).Ubuffer.Low_transmit := Transmit_strategy
SAP_List(S_SAP_index).Ubuffer.Low_buffer := DLSDU

- 114 - 61158-4-3 © IEC:2007(E)

Function name

Operations

RESET_LIST

Reset all activated SAP by setting its entry to invalid value and reset all
services queued in the data interface to MAC sublayer.

SAP_List (0..63, NIL).I/Ubuffer.Remove() until empty

SAP_List (0..63, NIL) := NIL

|_List.Num_entry-- |_List.Remove() until empty

C_List.Num_entry-- C_List.Remove() until empty

RESET_SAP_LIST

Reset an activated SAP by setting its entry to invalid value.

(SAP_List(S_SAP_index) := NIL
S_SAP_index
)
RESOURCE Check that local SAP resources are available to handle the requested data
(SAP_List(S_SAP_index) = NIL
S_SAP_index, SAP_List(S_SAP_index).Function_List_| contains combination
DLSDU.Len (Service_class, Function)

)

DLSDU.Len < DLSDU_length_list-entry of combination (Service_class,
Function)

Set_current_values

Variable_name((1 to n),
Index(1 to k))

Set the management variables for confirmation to DLMS-user.
LOOP for i from 1 to n for all variable names:
Current_value (i) := Variables.Variable_name (i)

SET_RSAP_LIST

(
S_SAP_index,

DLSDU_length_list

)

Activate a SAP as SRD responder by setting its entries to the requested
values.

SAP_List(S_SAP_index).Sbuffer.Low_len) :=
DLSDU_length_list.Max_DLSDU_DXM_length_ind_low
SAP_List(S_SAP_index).Sbuffer.High_len) :=
DLSDU_length_list.Max_DLSDU_DXM_length_ind_high

SET_RSAP_LIST

(
S_SAP_index,
Access,
DLSDU_length_list,
Indication_mode,
Publisher_enabled

Activate a SAP as SRD responder by setting its entries to the requested
values.

SAP_List(S_SAP_index).Access := Access
SAP_List(S_SAP_index).Indication_mode := Indication_mode
SAP_List(S_SAP_index).Publisher_enabled := Publisher_enabled
SAP_List(S_SAP_index).Ubuffer.Low_buffer.DLSDU.Len) :=
DLSDU_length_list.Max_DLSDU_length_req_low
SAP_List(S_SAP_index).Ubuffer.High_buffer.DLSDU.Len) :=
DLSDU_length_list.Max_DLSDU_length_req_high
SAP_List(S_SAP_index).Ibuffer.Low_len) :=
DLSDU_length_list.Max_DLSDU_length_ind_low
SAP_List(S_SAP_index).lbuffer.High_len) :=
DLSDU_length_list.Max_DLSDU_length_ind_high

SET_SSAP_LIST

(
S_SAP_index,
Access,
Service_list

)

Activate a SAP by setting its entries to the requested values.
SAP_List(S_SAP_index).Access := Access

compose SAP_List(S_SAP_index).Function_list_| based on Service_list
compose SAP_List(S_SAP_index).Function_list_R based on Service_list

61158-4-3 © IEC:2007(E) - 115 -

Function name Operations
Set variable list Check that the requested management variable names are inside their
- - ranges and set them to the list of variables and set the corresponding
Variable_name ((1 to n), DLM_status:
Index(1 to k)), LOOP for i from 1 to n for all variable names:
Desired_value (1 to n) vn := Variable_name(i)
) if (LOWLIM(vn) < Desired_value(i) < HIGHLIM(vn))

Variables.vn := Desired_value(i)
DLM_status(i) := OK

else
DLM_status(i) := IV

in_ring_desired = 0, 1

data_rate = 9,6 ... 12000

TS=0...126

Ttr=1 ... 2241

G =1 ...100 with Tgud = G * Ttr < 2°24
HSA =TS ... 126
max_retry_limit=1... 8

Tct =1..2732-1
maxTsh = 1..256
Tesi=1 ... 2"32-1

minTsdr =1 ... 2"6-1
maxTsdr = minTdsr ... 2*6-1
Tsl = maxTsdr ... 2*16-1
Tqui =0 ... 255

Tset=1 ... 255
DLPDU_sent_count=0

Retry_count =0
DLPDU_sent_count_sr(1ton) =0
Error_count(1ton) =0

SD _count=0

SD_error_count =0

Medium_redundancy = 0, 1
Preamble_extension = 0..7

Tptg = 0..7
Tics = 0..7

SYNCHT = Octetstring with length 0 or 2

HW_Release = Visible String with length 0 ... 32
SW_Release = Visible String with length 0 ... 32
with following LOWLIM and HIGHLIM for variables of SRC sublayer:

with following LOWLIM and HIGHLIM for variables of MAC sublayer:

/1 kbit/s

with following LOWLIM and HIGHLIM for variables of PHY sublayer:

Interface_mode = "FULL_DUPLEX" or "HALF_DUPLEX"
Loop_back_mode = "DISABLED" or "in MDS" or "in MAU"

Transmitter_output_channel (1 to 8) = "ENABLED" or "DISABLED"
Receiver_inpiut_channel (1 to 8) = "ENABLED" or "DISABLED"
Preferred_receive_channel = "NONE" or 1..8

Write_ident_list Compose parameter Ident_list for confirmation to DLMS user.

(Ident_list := Ident_List.Vendor_name + Ident_List.Model_name +

) Ident_List.HW_release + Ident_List.SW_release
Write_SAPstatus_list Compose parameters Access, Service_type, Role_in_service_list for
(confirmation to DLMS user.

D_SAP_index).Sevice_listl/R

D_SAP_index).Sevice_listl/R

Access := SAP_List(D_SAP_index).Access
) compose Service_type(1 to n) based on SAP_List(

compose Role_in_service_list(1 to n) based on SAP_List(

A.5 MAC
A.5.1 Primitive definitions
A.5.1.1 Primitives exchanged between DLM and MAC

Table A.11 shows the primitives issued by the DLM to the MAC.

- 116 - 61158-4-3 © IEC:2007(E)

Table A.11 — Primitives issued by DLM to MAC

Associated

Primitive name
parameters

MAC_RESET.req none

Table A.12 shows the primitives issued by the MAC to the DLM.

Table A.12 — Primitives issued by MAC to DLM

L Associated
Primitive name
parameters
MAC_RESET.cnf none
MAC_LFAULT.ind Fault_type
MAC_BFAULT.ind Fault_type
Tj

A.5.1.2 Parameters of MAC primitives

Table A.13 shows the parameters used with primitives exchanged between the DLM and the
MAC.

Table A.13 — Parameters used with primitives exchanged between DLM and MAC

Parameter name Description

Fault_type This parameter contains the error type.

Possible values:

State_conflict, Faulty_transceiver

Double_token, Duplicate_address, Not_synchronized, Out_of_ring, Time_out,
Hsa_error, In_ring

Tj Jitter time in Isochronous Mode

A.5.2 State machine description

The Media Access Control is responsible for the message exchange and control of the various
components using the media.

For a token based system, a main focus of this state machine is the token handling in all
situations (see 5.3.2). This will be done in the states LISTEN-TOKEN, CLAIM-TOKEN,
ACTIVE-IDLE (token-receipt) and PASS-TOKEN. To identify new stations ready to enter the
ring, a FDL-Status request will be executed periodically. The reply will be checked in the state
AWAIT-STATUS-RESPONSE. The state WAIT-TCT is used in isochronous mode to keep the
interval between SYNCH requests constant.

The other main task is the correct execution of service sequences (Request, Response)
including retries and duplication detection. This will be done by checking the high and low
priority request queues when the station is token holder (state USE-TOKEN). In the state
AWAIT-DATA-RESPONSE the reply to the processed service should be received. The state
CHECK-TOKEN-PASS is used for checking the Token-hold-time.

The incoming service indications are processed in the states ACTIVE-IDLE, PASSIVE-IDLE
and CHECK-TOKEN-PASS. All valid services received will be put into the indication queue
and the appropriate reply activity will be invoked.

All local variables of the MAC are shown in Table A.14.

61158-4-3 © IEC:2007(E)

A.5.3

- 117 -

Table A.14 — Local MAC variables

Struct element Type Range Remark
FCB [0..126] of U8 (0,1
FCV [0..126] of U8 0,1
REQM S4
RESM S5
Cnf Bool Single variables
Dup_add_count us 0,1
Gap_lIp_cnt u16
Gap_to_do Bool
Gud_timer u32
Isochronous_Start Bool
LMS_cnt u16
Req_h_cnt u16
Retry_cnt us 0..15
Second us 0,1
Token_holder us 0..126, NIL
Tok_cnt us
Tok_err_cnt us
Trr u24
T_cnt u16é 0..259
TRT Token Rotation Timer
cv u24 Current Value of
Start(Ttr) Trigger Starting count down (from Ttr)

MAC state table

The MAC state table is shown in Table A.15.

Table A.15 — MAC state table

Event
No. |Current state Icondition Next state
=action
1 |OFFL /H_List.Num_entry # 0 OFFL
=
SETUP_HCON_DS
2 |OFFL /L_List.Num_entry # 0 OFFL
=
SETUP_LCON_DS
3 |OFFL MAC_RESET.req OFFL
=
RESET_HL_LIST
MAC_RESET.cnf
4 |OFFL /Data_Rate # NIL && In_ring_desired LISTEN

=
INIT_FCBV_LIST, RESM := empty, INIT_LMS, Isochronous_Start =

TRUE,T cnt:=0

- 118 — 61158-4-3 © IEC:2007(E)

Event
No. |Current state Icondition Next state
=action
5 |OFFL /Data_Rate # NIL && !In_ring_desired PASSIVE_I
=
RESM := empty
6 [OFFL SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) OFFL
=
Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)
7 |OFFL SRC_RECEIVE_ERROR.ind OFFL
=
Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)
8 [OFFL SRC_RECEIVE_TOKEN.ind (DA, SA) OFFL
=
Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)
9 [OFFL SRC_SEND_DATA.cnf OFFL
=
Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)
10 |[OFFL SRC_SEND_TOKEN.cnf(Status) OFFL
=
Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)
11 |[OFFL SRC_SLOT_EVENT.ind OFFL
=
Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)
12 |OFFL SRC_SYNI_EVENT.ind OFFL
=
Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)
13 [LISTEN /NIn_ring_desired PASSIVE_I
=
14 [LISTEN /H_List.Num_entry # 0 LISTEN
=
SETUP_HCON_DS
15 [LISTEN /L_List.Num_entry # 0 LISTEN
=
SETUP_LCON_DS
16 [LISTEN MAC_RESET.req OFFL
=
RESET_HL_LIST
MAC_RESET.cnf
17 |[LISTEN SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) LISTEN
=
T cnt:=0
18 [LISTEN SRC_RECEIVE_ERROR.ind LISTEN
=
T cnt:=0
19 [LISTEN SRC_RECEIVE_TOKEN.ind (DA, SA) OFFL
/SA =TS || DA =TS && Dup_add_count >0
=
Fault_type := Duplicate_address, T_cnt := 0, Dup_add_count := 0
MAC_BFAULT.ind (Fault_type)
20 [LISTEN SRC_RECEIVE_TOKEN.ind (DA, SA) LISTEN

/DA =TS || SA =TS && Dup_add_count =0
=
Dup_add_count++, Tok_cnt--,T_cnt := 0

61158-4-3 © IEC:2007(E) - 119 -

Event
No. [Current state Icondition Next state
=action

21 |LISTEN SRC_RECEIVE_TOKEN.ind (DA, SA) OFFL
/(DA # TS && SA # TS) && (DA > HSA || SA > HSA) && Dup_hsa_count > 0
=
Fault_type := Hsa_error, Dup_hsa_count := 0, T_cnt :=0
MAC_BFAULT.ind (Fault_type)

22 |LISTEN SRC_RECEIVE_TOKEN.ind (DA, SA) LISTEN
/(DA # TS && SA # TS) && (DA > HSA || SA > HSA) && Dup_hsa_count = 0
=
Dup_hsa_count++, Tok_cnt--,T_cnt := 0

23 |LISTEN SRC_RECEIVE_TOKEN.ind (DA, SA) LISTEN
/DA # TS && SA # TS && DA =< HSA && SA =< HSA && First = NIL
=
BUILD_LMS(DA), Token_holder := DA, Tok_cnt--,T_cnt := 0,First:=SA

24 |LISTEN SRC_RECEIVE_TOKEN.ind (DA, SA) LISTEN
/DA # TS && SA # TS && DA =< HSA && SA =< HSA && First # NIL && (SA =
Token_holder || Tok_cnt=0)
=
INIT_LMS, BUILD_LMS(DA), Token_holder := DA,Tok_cnt--, T_cnt := 0,
First:=DA

25 |LISTEN SRC_RECEIVE_TOKEN.ind (DA, SA) LISTEN
/DA # TS && SA # TS && DA =< HSA && SA =< HSA && First # NIL && SA =
Token_holder && Tok_cnt > 0 && DA # First && LMS_cnt = 0
=
LMS_UPDATE(DA, SA), Token_holder := DA ,Tok_cnt--, T_cnt := 0

26 |LISTEN SRC_RECEIVE_TOKEN.ind (DA, SA) LISTEN
/DA # TS && SA # TS && DA =< HSA && SA =< HSA && First # NIL && SA =
Token_holder && Tok_cnt > 0 && DA = First && LMS_cnt = 0
=
LMS_UPDATE(DA, SA), Token_holder := DA, LMS_cnt := 1, Tok_cnt--, T_cnt
=0

27 |LISTEN SRC_RECEIVE_TOKEN.ind (DA, SA) LISTEN
/DA # TS && SA # TS && DA =< HSA && SA =< HSA && First # NIL && SA =
Token_holder && LMS[SA]=DA && Tok_cnt > 0 && DA # First && LMS_cnt = 1
=
Token_holder := DA, Tok_cnt--, T_cnt := 0

28 |LISTEN SRC_RECEIVE_TOKEN.ind (DA, SA) ACTIVE_I
/DA # TS && SA # TS && DA =< HSA && SA =< HSA && First # NIL && SA =
Token_holder && LMS[SA]=DA && Tok_cnt > 0 && DA = First && LMS_cnt = 1
=
Tok_cnt--, T_cnt := 0, LMS_cnt++, RECV_ERR_cnt,SER_ACK_cnt := 0

29 |LISTEN SRC_SEND_DATA.cnf OFFL
=
Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)

30 |LISTEN SRC_SEND_TOKEN.cnf(Status) OFFL
=
Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)

31 |LISTEN SRC_SLOT_EVENT.ind LISTEN
NTIME_OUT
=
T _cnt ++

32 |LISTEN SRC_SLOT_EVENT.ind CLAIM_T

/TIME_OUT

=
Fault_type := Time_out, T_cnt := 0
MAC_BFAULT.ind (Fault_type)

-120 - 61158-4-3 © IEC:2007(E)

Event
No. [Current state Icondition Next state
=action
33 [LISTEN SRC_SYNI_EVENT.ind LISTEN
=
Fault_type := Not_synchronized, T_cnt := 0
MAC_BFAULT.ind (Fault_type)
34 |ACTIVE_I /NIn_ring_desired PASSIVE_I
=
35 |ACTIVE_I /LMSI[TS] = NIL && H_List.Num_entry # 0 ACTIVE_I
=
SETUP_HCON_DS
36 |ACTIVE_I /LMS[TS] = NIL && L_List.Num_entry = 0 ACTIVE_I
=
SETUP_LCON_DS
37 [ACTIVE_I MAC_RESET.req OFFL
=
RESET_HL_LIST
MAC_RESET.cnf
38 |ACTIVE_I SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I
/DA = SA && FC.Frame = req && FC.Function = FDL_status &&
Isochronous_mode>0
=
TRT_OFF
39 |ACTIVE_I SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I
/DA =TS && FC.Frame = req && FC.Function = FDL_status && LMS(TS) =
NIL
=
DLSDU,SSAP,DSAP:=NIL, FC.Frame := rsp, FC.Stn-Type := M_rdy,
FC.Function := OK , RESM := empty, T_cnt := 0, TRT_ON
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)
40 |ACTIVE_I SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I
/DA =TS && FC.Frame = req && FC.Function = FDL_status && LMS(TS) #
NIL
=
DLSDU,SSAP,DSAP:=NIL, FC.Frame := rsp, FC.Stn-Type := M_in_ring,
FC.Function := OK , RESM := empty, T_cnt := 0, TRT_ON
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)
41 |ACTIVE_I SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I
/DA = TS && FC.Frame = req && FC.Function = Ident
=
DA := SA, SA := TS, DSAP <:= SSAP, RESM := empty, IDENT, T_cnt := 0,
TRT_ON
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)
42 |ACTIVE_I SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I
/DA =TS && FC.Frame = req && FC.Function = DLSAP_status
=
DA := SA, SA := TS, DSAP <:= SSAP, RESM := empty, LSAP_STATUS,
T cnt:=0, TRT_ON
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)
43 |ACTIVE_I SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I
/(DA =127) && FC.Frame = res && SAP_CHECK(DSAP) && B_BUF(DSAP)
=
RESM := empty, SETUP_SIND(0,NO), T_cnt:= 0
44 |ACTIVE_I SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I
/(DA =127) && FC.Frame = res && (!SAP_CHECK(DSAP) || !'B_BUF(DSAP))
=
RESM := empty, T_cnt :=0
45 |ACTIVE_I SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I

/(DA =TS || DA =127) && FC.Frame = req && (FC.Function =TE || FC.Function

= CV) && SAP_CHECK(CS) && |_BUF(CS)

=
RESM := empty, SETUP_IND(0,NO), T_cnt := 0, TRT_ON

61158-4-3 © IEC:2007(E) -121 -

. [Current state

Event
Icondition
=action

Next state

46

ACTIVE_I

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)
/(DA =TS || DA =127) && FC.Frame = req && (FC.Function = CV ||
FC.Function = TE) && (!SAP_CHECK(CS) || 'I_BUF(CS))

=
RESM := empty, T_cnt := 0, TRT_ON

ACTIVE_I

47

ACTIVE_I

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)
/(DA'=TS || DA =127) && FC.Frame = req && (FC.Function = SDN_H ||
FC.Function = SDN_L) && SAP_CHECK(DSAP) && |_BUF(DSAP)

=
RESM := empty, SETUP_IND(0,NO), T_cnt := 0, TRT_ON

ACTIVE_I

48

ACTIVE_I

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)
/(DA'=TS || DA =127) && FC.Frame = req && (FC.Function = SDN_H ||
FC.Function = SDN_L) && (ISAP_CHECK(DSAP) || !|_BUF(DSAP))

=
RESM := empty, T_cnt := 0, TRT_ON

ACTIVE_I

49

ACTIVE_I

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)

/DA =TS && FC.Frame = req && (FC.Function = SDA_L || FC.Function =
SDA_H || FC.Function = SRD_L || FC.Function = SRD_H || FC.Function =
SRD_BCT) && RETRY

=

DA := RESM.DA, SA :=TS, FC := RESM.FC, DSAP := RESM.DSAP, SSAP :=

RESM.SSAP, DLSDU := = RESM. DLSDU, T_cnt := 0, TRT_ON
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

ACTIVE_I

50

ACTIVE_I

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)

/DA = TS && FC.Frame = req && (FC. Funct|on = SDA_H || FC.Function =
SDA_L) && 'RETRY && SAP_CHECK(DSAP) && I_BUF(DSAP)

=

SETUP_IND(0,NO), FC.Function := SC, SETUP_RESM, T_cnt := 0, TRT_ON
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

ACTIVE_I

51

ACTIVE_I

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)
/DA = TS && FC.Frame = req && (FC. Functlon = SDA_L || FC.Function =
SDA_H) && !IRETRY && SAP_CHECK(DSAP) && !l BUF(DSAP)

=

RESM := empty, DA := SA, SA := TS, FC.Frame := rsp, SETUP_STN_TYPE,
FC.Function := RR, DLSDU,SSAP,DSAP:=NIL, T_cnt := 0, TRT_ON
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

ACTIVE_I

52

ACTIVE_I

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)

/DA =TS && FC.Frame = req && (FC.Function = SRD_H || FC.Function =
SRD_BCT || FC.Function = SRD_L) && |RETRY && SAP_CHECK(DSAP) &&
|_BUF(DSAP) && U_BUF(DSAP)

=

SETUP_REPLY,

if(SAP_List[DSAP].Indication_Mode = ALL || Upd_status # NO)
SETUP_IND(Ref, Upd_status),

DA := R_DA, SA := TS, FC.Function := Upd_status,

FC.Frame := rsp, SETUP_STN_TYPE, DSAP <> SSAP,

DLSDU := R_SDU, SETUP RESM, T_cnt:=0, TRT_ON
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

ACTIVE_I

53

ACTIVE_I

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)

/DA =TS && FC.Frame = req && (FC.Function = SRD_H || FC.Function =
SRD_BCT || FC.Function = SRD_L) && 'RETRY && SAP_CHECK(DSAP) &&
'I_BUF(DSAP) && U_BUF(DSAP)

=
SETUP_REPLY,DA := R_DA, SA := TS,

FC.Function := R_FUNCTION, FC.Frame := rsp,
SETUP_STN_TYPE, DSAP <:= SSAP,

DLSDU := R_SDU, T_cnt := 0, TRT_ON

SRC_SEND_ DATA req (DA, SA FC, DSAP, SSAP, DLSDU)

ACTIVE_I

-122 - 61158-4-3 © IEC:2007(E)

Event
No. [Current state Icondition Next state
=action
54 |ACTIVE_I SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I
/DA =TS && FC.Frame = req && (FC.Function = SRD_H || FC.Function =
SRD_BCT || FC.Function = SRD_L) && 'RETRY && SAP_CHECK(DSAP) &&
|_BUF(DSAP) && 'U_BUF(DSAP)
=
SETUP_IND(0,NO), FC.Function := SC, SETUP_RESM, T_cnt :=0, TRT_ON
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)
55 |ACTIVE_I SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I
/DA =TS && FC.Frame = req && (FC.Function = SRD_H || FC.Function =
SRD_BCT || FC.Function = SRD_L) && |RETRY && SAP_CHECK(DSAP) &&
'I_BUF(DSAP) && 'U_BUF(DSAP)
=
RESM := empty, DA := SA, SA := TS, FC.Frame := rsp, SETUP_STN_TYPE,
FC.Function := RR, DLSDU,SSAP,DSAP:=NIL, T_cnt := 0, TRT_ON
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)
56 |ACTIVE_I SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I
/DA =TS && FC.Frame = req && (FC.Function = SRD_H || FC.Function =
SRD_BCT || FC.Function = SRD_L || FC.Function = SDA_H || FC.Function =
SDA_L) && 'RETRY && !SAP_CHECK(DSAP)
=
RESM := empty, DA := SA, SA := TS, FC.Frame := rsp, SETUP_STN_TYPE,
FC.Function := RS, DLSDU,SSAP,DSAP:=NIL, T_cnt := 0, TRT_ON
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)
57 |ACTIVE_I SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I
/(DA # TS && (DA#127 || (FC.Function # SDN_H && FC.Function # SDN_L))
|| FC.Frame # req || INVALID_FUNCTION) && !(DA = SA && FC.Frame = req
&& FC.Function = FDL_status && Isochronous_mode=0)
=
RESM := empty, T_cnt := 0, TRT_ON
58 |ACTIVE_I SRC_RECEIVE_ERROR.ind ACTIVE_I
=
T cnt:=0, TRT_ON
59 |ACTIVE_I SRC_RECEIVE_TOKEN.ind (DA, SA) LISTEN
/DUPLICATE_ADDRESS && Dup_add_count > 0
=
INIT_FCBV_LIST, INIT_LMS, RESM := empty, Dup_add_count := 0,
Fault_type := Duplicate_address, Second := 0, T_cnt:=0
MAC_BFAULT.ind (Fault_type)
60 |ACTIVE_I SRC_RECEIVE_TOKEN.ind (DA, SA) ACTIVE_I
/DUPLICATE_ADDRESS && Dup_add_count =0
=
Dup_add_count++, TOK_CNT_UPD, Second := 0, RESM := empty, T_cnt := 0,
TRT_ON
61 |ACTIVE_I SRC_RECEIVE_TOKEN.ind (DA, SA) LISTEN
/'DUPLICATE_ADDRESS && TOKEN_ERROR && Tok_err_cnt > (Limit - 2)
=
INIT_FCBV_LIST, INIT_LMS, RESM := empty, Fault_type := Out_of_ring,
Second =0, T_cnt:=0
MAC_BFAULT.ind (Fault_type)
62 |ACTIVE_I SRC_RECEIVE_TOKEN.ind (DA, SA) ACTIVE_I
/'DUPLICATE_ADDRESS && TOKEN_ERROR && Tok_err_cnt < (Limit - 2)
=
RESM := empty, LMS_UPDATE(DA, SA), TOK_CNT_UPD, Tok_err_cnt++,
Second := 0, T_cnt:=0, TRT_ON
63 |ACTIVE_I SRC_RECEIVE_TOKEN.ind (DA, SA) ACTIVE_I

/'DUPLICATE_ADDRESS && !TOKEN_ERROR && LMS[SA] # DA && DA # TS

=
RESM := empty, LMS_UPDATE(DA, SA), TOK_CNT_UPD, Second := 0, T_cnt
:= 0, TRT_ON

61158-4-3 © IEC:2007(E) -123 -
Event
No. [Current state Icondition Next state
=action
64 |ACTIVE_I SRC_RECEIVE_TOKEN.ind (DA, SA) ACTIVE_I
/'DUPLICATE_ADDRESS && ITOKEN_ERROR && LMS[SA] = DA && DA # TS
=
RESM := empty, TOK_CNT_UPD, Second := 0, T_cnt := 0, TRT_ON
65 |ACTIVE_I SRC_RECEIVE_TOKEN.ind (DA, SA) USE_T
/'DUPLICATE_ADDRESS && ITOKEN_ERROR && DA = TS && LMS[SA] = DA
&& Tct=0 && H_list.Num_entry # 0
=
RESM := empty, GAP_UPDATE, TTH_UPDATE, TOK_CNT_UPD, Second :=
0, Req_h_cnt := H_list.Num_entry, SETUP_HREQ, T_cnt := 0, TRT_ON
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)
66 |ACTIVE_I SRC_RECEIVE_TOKEN.ind (DA, SA) ACTIVE_I
/'DUPLICATE_ADDRESS && ITOKEN_ERROR && DA = TS && LMS[LMS[SA]]
= DA && Second =0
=
RESM := empty, Second++, T_cnt := 0, TRT_ON
67 |ACTIVE_I SRC_RECEIVE_TOKEN.ind (DA, SA) USE_T
/'DUPLICATE_ADDRESS && ITOKEN_ERROR && DA = TS && LMS[LMS[SA]]
= DA && Second > 0 && Tct = 0 && H_list.Num_entry = 0
=
RESM := empty, GAP_UPDATE, TTH_UPDATE, TOK_CNT_UPD,
LMS_UPDATE(DA, SA), Second := 0, Req_h_cnt := H_list.Num_entry,
SETUP_HREQ, T_cnt:=0
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)
68 |ACTIVE_I SRC_RECEIVE_TOKEN.ind (DA, SA) ACTIVE_I
/'DUPLICATE_ADDRESS && ITOKEN_ERROR && DA = TS && LMS[DA] =
NIL && ((LMS[SA] > SA && LMS[SA] > TS && SA < TS) || (LMS[SA] < SA &&
((SA <T8) || (TS < LMS[SA]))))
=
RESM := empty, TTH_INIT, LMS_UPDATE(DA, SA), TOK_CNT_UPD, Second
:= 0, GAP_INIT(0), Fault_Type :=In_ring, T_cnt := 0, TRT_ON
MAC_BFAULT.ind (Fault_type)
69 |ACTIVE_I SRC_RECEIVE_TOKEN.ind (DA, SA) CHECK_A
/'DUPLICATE_ADDRESS && ITOKEN_ERROR && DA = TS && LMS[SA] = DA
&& Tct=0 && H_list.Num_entry = 0
=
RESM := empty, GAP_UPDATE, TTH_UPDATE, TOK_CNT_UPD, Second :=
0, Req_h_cnt := H_list.Num_entry, T_cnt := 0, TRT_ON
70 |ACTIVE_I SRC_RECEIVE_TOKEN.ind (DA, SA) CHECK_A
/'DUPLICATE_ADDRESS && ITOKEN_ERROR && DA = TS && LMS[LMS[SA]]
= DA && Second > 0&&Tct=0 && H_list.Num_entry = 0
=
RESM := empty, GAP_UPDATE, TTH_UPDATE, TOK_CNT_UPD,
LMS_UPDATE(DA, SA), Second := 0, Req_h_cnt := H_list.Num_entry, T_cnt
=0, TRT_ON
71 |ACTIVE_I SRC_RECEIVE_TOKEN.ind (DA, SA) WAIT_TCT
/'DUPLICATE_ADDRESS && ITOKEN_ERROR && DA = TS && LMS[SA] = DA
&& Tct>0
=
RESM := empty, GAP_UPDATE, TTH_UPDATE, TOK_CNT_UPD, Second :=
0, Req_h_cnt := H_list.Num_entry, DA,SA:=TS, FC.Function := FDL_status,
FC.Frame:=req, DLSDU,SSAP,DSAP:=NIL, T_cnt := 0, TRT_OFF
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)
72 |ACTIVE_I SRC_RECEIVE_TOKEN.ind (DA, SA) WAIT_TCT

/'DUPLICATE_ADDRESS && !TOKEN_ERROR && DA = TS && LMS[LMS[SA]]
= DA && Second > 0&& Tct > 0

=

RESM := empty, GAP_UPDATE, TTH_UPDATE(DA, SA), TOK_CNT_UPD,
LMS_UPDATE, Second := 0, Req_h_cnt := H_list.Num_entry, DA,SA:=TS,
FC.Function := FDL_status, FC.Frame:=req, DLSDU,SSAP,DSAP:=NIL,T_cnt
=0, TRT_OFF

SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

- 124 - 61158-4-3 © IEC:2007(E)

. [Current state

Event
Icondition
=action

Next state

73

ACTIVE_I

SRC_RECEIVE_TOKEN.ind (DA, SA)

/'DUPLICATE_ADDRESS && !TOKEN_ERROR && DA = TS &&
('LMS[LMS[SA]]=DA && !(LMS[DA] = NIL && ((LMS[SA] > SA && LMS[SA] >
TS && SA < TS) || (LMS[SA] < SA && ((SA <TS) || (TS < LMS[SA]))))

=

RESM := empty, LMS_UPDATE(DA, SA), TOK_CNT_UPD, Second :=0,

T cnt:=0, TRT_ON

ACTIVE_I

74

ACTIVE_I

SRC_SEND_DATA.cnf
=

ACTIVE_I

75

ACTIVE_I

SRC_SEND_TOKEN.cnf(Status)
=

Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)

OFFL

76

ACTIVE_I

SRC_SLOT_EVENT.ind
NTIME_OUT

=

T cnt ++, TRT_ON

ACTIVE_I

77

ACTIVE_I

SRC_SLOT_EVENT.ind
/TIME_OUT

=
RESM := empty, Fault_type := Time_out, T_cnt := 0, TRT_ON
MAC_BFAULT.ind (Fault_type)

CLAIM_T

78

ACTIVE_I

SRC_SYNI_EVENT.ind

=
Fault_type := Not_synchronized, T_cnt := 0, TRT_ON
MAC_BFAULT.ind (Fault_type)

ACTIVE_I

79

CLAIM_T

JLMS[TS] # NIL && H_list.Num_entry # 0 && Tct=0

=
GAP_UPDATE, TTH_UPDATE, Req_h_cnt := H_list.Num_entry,
SETUP_HREQ, Isochronous_Start = TRUE
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

USE_T

80

CLAIM_T

/LMS[TS] # NIL && H_list.Num_entry = 0 && Tct=0

=
GAP_UPDATE, TTH_UPDATE, Req_h_cnt := H_list.Num_entry,
Isochronous_Start = TRUE

CHECK_A

81

CLAIM_T

/LMS[TS] # NIL && Tct >0

=

GAP_UPDATE, TTH_UPDATE, Req_h_cnt := H_list.Num_entry, DA,SA:=TS,
FC.Function := FDL_status, FC.Frame:=req, DLSDU,SSAP,DSAP:=NIL
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

WAIT_TCT

82

CLAIM_T

/LMS[TS] = NIL

=

INIT_LMS, BUILD_LMS(TS), Second := 0, Fault_Type := In_ring, Retry_cnt :=
0, DA:=TS, SA:=TS, TTH_INIT, if (NS := (TS+1) mod (HSA+1)) Gap_to_do
:= FALSE else Gap_to_do := TRUE, Gap_lp_cnt:=0

MAC_BFAULT.ind (Fault_type),

SRC_SEND_TOKEN.req (DA, SA)

PASS_T

83

WAIT_TCT

MAC_RESET.req

=
RESET_HL_LIST
MAC_RESET .cnf

OFFL

84

WAIT_TCT

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)
=

Fault_type := State_conflict, T_cnt := 0

MAC_LFAULT.ind (Fault_type)

OFFL

85

WAIT_TCT

SRC_RECEIVE_ERROR.ind

=

Fault_type := State_conflict, T_cnt := 0
MAC_LFAULT.ind (Fault_type)

OFFL

61158-4-3 © IEC:2007(E) -125 -
Event
No. [Current state Icondition Next state
=action
86 |WAIT_TCT SRC_RECEIVE_TOKEN.ind (DA, SA) OFFL
=
Fault_type := State_conflict, T_cnt := 0
MAC_LFAULT.ind (Fault_type)
87 |WAIT_TCT SRC_SEND_DATA.cnf USE_T
/lsochronous_Start
=
Tct:= TCT.cv, TCT.start(0),
Fault_type:=SYNCH,
DA:=0x7f,SSAP:=SYNCH.SSAP,DSAP:=SYNCH.DSAP
FC.Function:=SDN_H,FC.Frame:=req,
FC.FCB:=0, FC.FCV:=0, DLSDU:=SYNCH.DLSDU,
Synch := TRUE, Cnf := FALSE, TRT_ON
Isochronous_Start = FALSE
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)
MAC_BFAULT.ind (Fault_type)
88 |WAIT_TCT SRC_SEND_DATA.cnf USE_T
lsochronous_Start && Isochronous_mode=1 && TCT.cv > Tct
=
Tsh :=TCT.cv-Tct,
TCT.start(2*Tct-TCT.cv),
Fault_type:=Synch_Delay,
DA:=0x7f,SSAP:=SYNCH.SSAP,DSAP:=SYNCH.DSAP
FC.Function:=SDN_H,FC.Frame:=req,
FC.FCB:=0, FC.FCV:=0, DLSDU:=SYNCH.DLSDU,
Synch := TRUE, Cnf := FALSE, TRT_ON
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)
MAC_BFAULT.ind (Fault_type,Tsh)
89 |WAIT_TCT SRC_SEND_DATA.cnf WAIT_TCT
lsochronous_Start && Isochronous_mode=2 && TCT.cv > Tct
=
Tsh :=Tct,
TCT.start(2*Tct-TCT.cv),
Fault_type:=SynchDelay,
DA,SA:=TS, FC.Function := FDL_status, FC.Frame:=req, FC.FCB:=0,
FC.FCV:=0, DLSDU,SSAP,DSAP:=NIL
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)
MAC_BFAULT.ind(Fault_Type,Tsh)
90 |WAIT_TCT SRC_SEND_DATA.cnf USE_T
lsochronous_Start && Isochronous_mode=0 && TCT.cv > Tct &&
H_list.Num_entry # 0
=
RESM := empty, Req_h_cnt := H_list.Num_entry, SETUP_HREQ
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)
91 |WAIT_TCT SRC_SEND_DATA.cnf CHECK_A
lsochronous_Start && Isochronous_mode=0 && TCT.cv > Tct &&
H_list.Num_entry = 0
=
RESM := empty, Req_h_cnt := H_list.Num_entry
92 |WAIT_TCT SRC_SEND_DATA.cnf WAIT_TCT
lsochronous_Start && Tct-Tpsp < TCT.cv < Tct
=
TPSP.start(Tct-TCT.cv)
93 |WAIT_TCT SRC_SEND_DATA.cnf WAIT_TCT

'lsochronous_Start && TCT.cv < Tct-Tpsp

=

DA,SA:=TS, FC.Function := FDL_status, FC.Frame:=req, FC.FCB:=0,
FC.FCV:=0, DLSDU,SSAP,DSAP:=NIL

SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

- 126 - 61158-4-3 © IEC:2007(E)

Event

No. |Current state Icondition Next state
=action

94 (WAIT_TCT TPSP expired USE_T

/lsochronous_mode>0

=

TCT.start(2*Tct-TCT.cv),

Fault_type := SYNCH,
DA:=0x7f,SSAP:=SYNCH.SSAP,DSAP:=SYNCH.DSAP
FC.Function:=SDN_H,FC.Frame:=req,

FC.FCB:=0, FC.FCV:=0, DLSDU:=SYNCH.DLSDU,

Synch := TRUE, Cnf := FALSE, TRT_ON
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)
MAC_BFAULT.ind(Fault_Type)

95 [WAIT_TCT TPSP expired USE_T
/ (Isochronous_Mode=0 || Isochronous_Mode=3) && H_list.Num_entry = 0
=

RESM := empty, Req_h_cnt := H_list.Num_entry, SETUP_HREQ
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

96 |WAIT_TCT TPSP expired CHECK_A
/ (Isochronous_Mode=0 || Isochronous_Mode=3) && H_list.Num_entry = 0
=
RESM := empty, Req_h_cnt := H_list.Num_entry, T_cnt := 0

97 |WAIT_TCT SRC_SEND_TOKEN.cnf(Status) OFFL

=
Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)

98 [WAIT_TCT SRC_SLOT_EVENT.ind OFFL
=

Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)

99 [WAIT_TCT SRC_SYNI_EVENT.ind ACTIVE_I

=
Fault_type := Not_synchronized, T_cnt := 0, TRT_ON
MAC_BFAULT.ind (Fault_type)

100 (USE_T MAC_RESET.req OFFL

=
RESET_HL_LIST
MAC_RESET .cnf

101 (USE_T SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) OFFL
=

Fault_type := State_conflict, T_cnt := 0
MAC_LFAULT.ind (Fault_type)

102 (USE_T SRC_RECEIVE_ERROR.ind OFFL
=

Fault_type := State_conflict, T_cnt := 0
MAC_LFAULT.ind (Fault_type)

103 |USE_T SRC_RECEIVE_TOKEN.ind (DA, SA) OFFL

=
Fault_type := State_conflict, T_cnt := 0
MAC_LFAULT.ind (Fault_type)

104 (USE_T SRC_SEND_DATA.cnf AW_DATA
/Cnf && !Gap_in_action

=
DLPDU_sent_count++

DLPDU_sent_count_sr[DA]++

SER_ACK_cnt++,

if (SER_ACK_cnt := SER_ACK_limit) SER_ACK_cnt,RECV_ERR_cnt := 0

105 |USE_T SRC_SEND_DATA.cnf CHECK_A
/ICnf && !Synch
=

61158-4-3 © IEC:2007(E) - 127 -
Event
No. [Current state Icondition Next state
=action
106 (USE_T SRC_SEND_DATA.cnf CHECK_A
/1Cnf && Synch && TCT.cv >143+ maxTsh
=
Synch := False,Fault_type:=SynchDelay
Tsh := TCT.cv-143
MAC_BFAULT.ind (Fault_type,Tsh)
107 (USE_T SRC_SEND_DATA.cnf CHECK_A
/1Cnf && Synch&& TCT.cv =<143+ maxTsh
=
Synch = False
108 (USE_T SRC_SEND_DATA.cnf AW_STATUS
/Cnf && Gap_in_action
=
Gap_in_action := FALSE, SER_ACK_cnt++,
if (SER_ACK_cnt := SER_ACK_limit) SER_ACK_cnt,RECV_ERR_cnt := 0
109 (USE_T SRC_SEND_TOKEN.cnf(Status) OFFL
=
Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)
110 (USE_T SRC_SLOT_EVENT.ind OFFL
=
Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)
111 (USE_T SRC_SYNI_EVENT.ind ACTIVE_I
/Gap_in_action
=
Gap_in_action := FALSE, Fault_type := Not_synchronized, T_cnt := 0
MAC_BFAULT.ind (Fault_type)
112 (USE_T SRC_SYNI_EVENT.ind ACTIVE_I
N'Gap_in_action
=
FCV_CLEAR, SETUP_CONM(DS), Fault_type := Not_synchronized
MAC_BFAULT.ind (Fault_type)
113 [AW_DATA MAC_RESET.req OFFL
=
RESET_HL_LIST
MAC_RESET.cnf
114 [AW_DATA SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I
/(FC.Frame =req || (FC.Function # SC && DA = TS))
=
FCV_CLEAR, SETUP_CONM(DS), Fault_type := Double_token, T_cnt := 0
MAC_BFAULT.ind (Fault_type)
115 [AW_DATA SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I
/FC.Frame = rsp && DA = TS && FC.Function # SC && (REQM.DA=SA ||
(DSAP,SSAP = Nil && (REQM.DSAP = SSAP || REQM.SSAP = DSAP)))
=
FCV_CLEAR, SETUP_CONM(DS), T_cnt:=0
116 [AW_DATA SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) CHECK_A
/ FC.Frame = rsp && DA = TS && FC.Function # SC && REQM.DA=SA &&
(DSAP,SSAP =Nil || (REQM.DSAP = SSAP && REQM.SSAP = DSAP))
=
SETUP_CON(FC, DLSDU), T_cnt := 0, FCB_UPDATE
117 [AW_DATA SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) CHECK_A
| FC.Frame = rsp && FC.Function =SC
=
SETUP_CON(FC, DLSDU), T_cnt := 0, FCB_UPDATE
118 [AW_DATA SRC_RECEIVE_ERROR.ind LISTEN

/RECV_ERR_cnt > RECV_ERR_limit

=
FCV_CLEAR, SETUP_CONM(DS), T_cnt := 0

- 128 -

61158-4-3 © IEC:2007(E)

. [Current state

Event
Icondition
=action

Next state

119

AW_DATA

SRC_RECEIVE_ERROR.ind
/!(Isochronous_mode=2 && REQM.serv_class high) && Retry_cnt > 0 && FCV
=1 && RECV_ERR_cnt < RECV_ERR_limit

=

Retry_Count--, Error_count[SA]--,

DA := REQM.DA, SA := TS, FC := REQM.FC,

DSAP := REQM.DSAP, SSAP := REQM.SSAP,

DLSDU := REQM.DLSDU,

Retry_cnt--, T_cnt := 0, RECV_ERR_cnt++
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

USE_T

120

AW_DATA

SRC_RECEIVE_ERROR.ind

/!(Isochronous_mode=2 && REQM.serv_class = high) && (Retry_cnt =0 ||
FCV = 0) && RECV_ERR_cnt < RECV_ERR_limit

=

FCV_CLEAR, SETUP_CONM(NA), T_cnt:=0

CHECK_A

121

AW_DATA

SRC_RECEIVE_ERROR.ind

/lsochronous_mode=2 && REQM.serv_class = high && RECV_ERR_cnt <
RECV_ERR_limit

=

SETUP_CONM(NA), T_cnt:=0

CHECK_A

122

AW_DATA

SRC_RECEIVE_TOKEN.ind (DA, SA)
/In_ring_desired

=
FCV_CLEAR, SETUP_CONM(DS), Fault_type := Double_token, T_cnt := 0
MAC_BFAULT.ind (Fault_type)

ACTIVE_I

123

AW_DATA

SRC_SEND_DATA.cnf

=

Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)

OFFL

124

AW_DATA

SRC_SEND_TOKEN.cnf(Status)
=

Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)

OFFL

125

AW_DATA

SRC_SLOT_EVENT.ind

/1(Isochronous_mode=2 && REQM.serv_class = high) && Retry_cnt > 0 &&
FCV =1

=

Retry_Count--, Error_count[SA]--,

DA := REQM.DA, SA := TS, FC := REQM.FC,

DSAP := REQM.DSAP, SSAP := REQM.SSAP,

DLSDU := REQM.DLSDU, Retry_cnt--

SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

USE_T

126

AW_DATA

SRC_SLOT_EVENT.ind
/!(Isochronous_mode=2 && REQM.serv_class = high) && Retry_cnt =0 || FCV
=0

=
FCV_CLEAR, SETUP_CONM(NA)

CHECK_A

127

AW_DATA

SRC_SLOT_EVENT.ind
/Isochronous_mode=2 && REQM.serv_class = high

=
SETUP_CONM(NA)

CHECK_A

128

AW_DATA

SRC_SYNI_EVENT.ind

/In_ring_desired

=

FCV_CLEAR, SETUP_CONM(DS), Fault_type := Not_synchronized
MAC_BFAULT.ind (Fault_type)

ACTIVE_I

129

CHECK_A

/ (TTH_AVAILABLE || Isochronous_Mode=2 || Isochronous_Mode=3) &&
Req_h_cnt#0

=
SETUP_HREQ, Req_h_cnt--, SA := TS
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

USE_T

61158-4-3 © IEC:2007(E) -129 -

. [Current state

Event
Icondition
=action

Next state

130

CHECK_A

JTTH_AVAILABLE && Req_h_cnt = 0 && Gap_lp_cnt =0

=
FC.Frame :=req, FC.FCB := 0, FC.FCV :=0, FC.Function := FDL_status, DA
:= Gap_address, SA := TS, DLSDU,SSAP,DSAP:=NIL, Cnf := TRUE,
Gap_in_action := TRUE

SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

USE_T

131

CHECK_A

/TTH_AVAILABLE && Req_h_cnt = 0 && Gap_lp_cnt # 0 && L_list. Num_entry
#0

=

SETUP_LREQ, SA :=TS

SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

USE_T

132

CHECK_A

N((TTH_AVAILABLE || Isochronous_Mode=2 || Isochronous_Mode=3) &&
Req_h_cnt <> 0) || ITTH_AVAILABLE || (Req_h_cnt =0 && Gap_Ip_cnt <> 0
&& L_list.Num_entry = 0)

=

Second := 0, DA := NS(TS), SA:=TS

SRC_SEND_TOKEN.req (DA, SA)

PASS_T

133

PASS T

MAC_RESET.req
=

RESET_HL_LIST
MAC_RESET.cnf

OFFL

134

PASS T

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)

=
Fault_type := State_conflict, T_cnt := 0
MAC_LFAULT.ind (Fault_type)

OFFL

135

PASS T

SRC_RECEIVE_ERROR.ind

=
Fault_type := State_conflict, T_cnt := 0
MAC_LFAULT.ind (Fault_type)

OFFL

136

PASS T

SRC_RECEIVE_TOKEN.ind (DA, SA)
=

Fault_type := State_conflict, T_cnt := 0
MAC_LFAULT.ind (Fault_type)

OFFL

137

PASS T

SRC_SEND_DATA.cnf

=
Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)

OFFL

138

PASS T

SRC_SEND_TOKEN.cnf(Status)
/Status = token_pass_failed && Second = 0

=
Second++, DS := NS(TS), SA := TS
SRC_SEND_TOKEN.req (DA, SA)

PASS T

139

PASS T

SRC_SEND_TOKEN.cnf(Status)

/Status = token_pass_failed && Second > 0
=

Second := 0, Fault_type := Faulty_transceiver
MAC_BFAULT.ind (Fault_type)

OFFL

140

PASS_T

SRC_SEND_TOKEN.cnf(Status)

/Status = no_token_pass

=

Second := 0, Fault_type := Faulty_transceiver
MAC_BFAULT.ind (Fault_type)

OFFL

141

PASS_T

SRC_SEND_TOKEN.cnf(Status)
INS =TS && Status = OK && !In_ring_desired

=
GAP_UPDATE, TTH_UPDATE, Req_h_cnt := H_list. Num_entry
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

USE_T

-130 - 61158-4-3 © IEC:2007(E)

Event

No. |Current state Icondition Next state
=action

142 |[PASS_T SRC_SEND_TOKEN.cnf(Status) WAIT_TCT

INS =TS && Status = OK && In_ring_desired && Tct > 0

=

RESM := empty, GAP_UPDATE, TTH_UPDATE, TOK_CNT_UPD, Second :
0, Req_h_cnt := H_list.Num_entry, DA,SA:=TS, FC.Function := FDL_status,
FC.Frame:=req, DLSDU,SSAP,DSAP:=NIL, T_cnt := 0, TRT_OFF
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

143 [PASS_T SRC_SEND_TOKEN.cnf(Status) USE_T
INS =TS && Status = OK && H_list.Num_entry # 0 && In_ring_desired &&
Tct=0

=
GAP_UPDATE, TTH_UPDATE, Req_h_cnt := H_list. Num_entry
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

144 |PASS_T SRC_SEND_TOKEN.cnf(Status) CHECK_A
INS =TS && Status = OK && H_list.Num_entry = 0 && In_ring_desired &&
Tct=0

=
GAP_UPDATE, TTH_UPDATE, Req_h_cnt := H_list.Num_entry

145 |PASS_T SRC_SEND_TOKEN.cnf(Status) CHECK_T
INS # TS && Status = OK
=

146 ([PASS_T SRC_SLOT_EVENT.ind OFFL
=

Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)

147 [PASS_T SRC_SYNI_EVENT.ind ACTIVE_I
/In_ring_desired

=
Fault_type := Not_synchronized
MAC_BFAULT.ind (Fault_type)

148 |CHECK_T [/LMS[TS] = NIL && H_List.Num_entry = 0 CHECK_T

=
SETUP_HCON_DS

149 |CHECK_T [/LMS[TS] = NIL && L_List.Num_entry # 0 CHECK_T
=
SETUP_LCON_DS

150 [CHECK_T |MAC_RESET.req OFFL

=
RESET_HL_LIST
MAC_RESET.cnf

151 [CHECK_T SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I
/DA = SA && FC.Frame = req && FC.Function = FDL_status && Tct >0

=
TRT_OFF
152 |CHECK_T SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I
/DA =TS && FC.Frame = req && FC.Function = FDL_status && LMS(TS) =
NIL

=

DLSDU,SSAP,DSAP:=NIL, FC.Frame := rsp, FC.Stn-Type := M_rdy,
FC.Function := OK , RESM := empty, T_cnt := 0, TRT_ON
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

153 [CHECK_T SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I
/DA =TS && FC.Frame = req && FC.Function = FDL_status && LMS(TS) #
NIL
=

DLSDU,SSAP,DSAP:=NIL, FC.Frame := rsp, FC.Stn-Type := M_in_ring,
FC.Function := OK , RESM := empty, T_cnt := 0, TRT_ON
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

61158-4-3 © IEC:2007(E) -131 -

. [Current state

Event
Icondition
=action

Next state

154

CHECK_T

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)

/DA = TS && FC.Frame = req && FC.Function = Ident

=

DA := SA, SA := TS, DSAP <:= SSAP, RESM := empty, IDENT, T_cnt :=0,
TRT_ON

SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

ACTIVE_I

155

CHECK_T

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)

/DA = TS && FC.Frame = req && FC.Function = LSAP_status

=

DA := SA, SA := TS, DSAP <:= SSAP, RESM := empty, LSAP_STATUS,
T cnt:=0, TRT_ON

SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

ACTIVE_I

156

CHECK_T

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)
/(DA=127) && FC.Frame = res && SAP_CHECK(DSAP) && B_BUF(DSAP)
=

RESM := empty, SETUP_SIND(0,NO), T_cnt := 0

ACTIVE_I

157

CHECK_T

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)
/(DA'=127) && FC.Frame = res && (!SAP_CHECK(DSAP) || !B_BUF(DSAP))

=
RESM := empty, T_cnt :=0

ACTIVE_I

158

CHECK_T

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)

/(DA =TS || DA =127) && FC.Frame = req && (FC.Function =TE || FC.Function
= CV) && SAP_CHECK(CS) && I_BUF(CS)

=

RESM := empty, SETUP_IND(0,NO), T_cnt := 0, TRT_ON

ACTIVE_I

159

CHECK_T

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)
/(DA=TS || DA =127) && FC.Frame = req && (FC.Function = CV ||
FC.Function = TE) && (ISAP_CHECK(CS) || '|_BUF(CS))

=
RESM := empty, T_cnt := 0, TRT_ON

ACTIVE_I

160

CHECK_T

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)
/(DA=TS || DA =127) && FC.Frame = req && (FC.Function = SDN_H ||
FC.Function = SDN_L) && SAP_CHECK(DSAP) && |_BUF(DSAP)

=
RESM := empty, SETUP_IND(0,NO), T_cnt := 0, TRT_ON

ACTIVE_I

161

CHECK_T

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)
/(DA=TS || DA =127) && FC.Frame = req && (FC.Function = SDN_H ||
FC.Function = SDN_L) && (ISAP_CHECK(DSAP) || !|_BUF(DSAP))

=
RESM := empty, T_cnt := 0, TRT_ON

ACTIVE_I

162

CHECK_T

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)

/DA =TS && FC.Frame = req && (FC.Function = SDA_L || FC.Function =
SDA_H || FC.Function = SRD_L || FC.Function = SRD_H || FC.Function =
SRD_BCT) && RETRY

=
DA := RESM.DA, SA :=TS, FC := RESM.FC, DSAP := RESM.DSAP, SSAP :=
RESM.SSAP, DLSDU := RESM.DLSDU, T_cnt := 0, TRT_ON
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

ACTIVE_|

163

CHECK_T

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)

/DA =TS && FC.Frame = req && (FC.Function = SDA_H || FC.Function =
SDA_L) && 'RETRY && SAP_CHECK(DSAP) && I_BUF(DSAP)

=

SETUP_IND(0,NO), FC.Function := SC, SETUP_RESM, T_cnt:=0, TRT_ON
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

ACTIVE_I

164

CHECK_T

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)

/DA =TS && FC.Frame = req && (FC.Function = SDA_L || FC.Function =
SDA_H) && |IRETRY && SAP_CHECK(DSAP) && !I_BUF(DSAP)

=

RESM := empty, DA := SA, SA :=TS, FC.Frame := rsp, SETUP_STN_TYPE,
FC.Function := RR, DLSDU,SSAP,DSAP:=NIL, T_cnt := 0, TRT_ON
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

ACTIVE_I

-132 - 61158-4-3 © IEC:2007(E)

Event

No. |Current state Icondition Next state
=action

165 [CHECK_T SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I

/DA =TS && FC.Frame = req && (FC.Function = SRD_H || FC.Function =
SRD_BCT || FC.Function = SRD_L) && 'RETRY && SAP_CHECK(DSAP) &&
|_BUF(DSAP) && U_BUF(DSAP)

=

SETUP_REPLY,

if(SAP_List[DSAP].Indication_Mode = ALL || Upd_status # NO)
SETUP_IND(Ref, Upd_status),

DA := R_DA, SA := TS, FC.Function := Upd_status,

FC.Frame := rsp, SETUP_STN_TYPE, DSAP <> SSAP,

DLSDU := R_SDU, SETUP_RESM, T_cnt := 0, TRT_ON
SRC_SEND_DATA.req (DA SA, FC, DSAP, SSAP DLSDU)

166 [CHECK_T SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I
/DA =TS && FC.Frame = req && (FC.Function = SRD_H || FC.Function =
SRD_BCT || FC.Function = SRD_L) && IRETRY && SAP_CHECK(DSAP) &&
'I_BUF(DSAP) && U_BUF(DSAP)

=

SETUP_REPLY,DA := R_DA, SA := TS,

FC.Function := R_FUNCTION, FC.Frame := rsp,

SETUP_STN_TYPE, DSAP <:= SSAP,

DLSDU := R_SDU, T_cnt := 0, TRT_ON

SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

167 |CHECK_T SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I
/DA = TS && FC.Frame = req && (FC. Funct|on = SRD_H || FC.Function =
SRD_BCT || FC.Function = SRD_L) && IRETRY && SAP_CHECK(DSAP) &&
|_BUF(DSAP) && 'U_BUF(DSAP)

=

SETUP_IND(0,NO), FC.Function := SC, SETUP_RESM, T_cnt := 0, TRT_ON
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

168 |CHECK_T SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I
/DA = TS && FC.Frame = req && (FC. Funct|on = SRD_H || FC.Function =
SRD_BCT || FC.Function = SRD_L) && IRETRY && SAP_CHECK(DSAP) &&
'I_BUF(DSAP) && !U_BUF(DSAP)

=

RESM := empty, DA := SA, SA := TS, FC.Frame := rsp, SETUP_STN_TYPE,
FC.Function := RR, DLSDU,SSAP,DSAP:=NIL, T_cnt := 0, TRT_ON
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

169 [CHECK_T SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I
/DA =TS && FC.Frame = req && (FC.Function = SRD_H || FC.Function =
SRD_BCT || FC.Function = SRD_L || FC.Function = SDA H || FC.Function =
SDA L) && !RETRY && ISAP CHECK(DSAP)

=

RESM := empty, DA := SA, SA := TS, FC.Frame := rsp, SETUP_STN_TYPE,
FC.Function := RS, DLSDU,SSAP,DSAP:=NIL, T_cnt := 0, TRT_ON
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

170 |CHECK_T SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) ACTIVE_I
/(DA # TS && (DA#127 || (FC.Function # SDN_H && FC.Function # SDN_L))
|| FC.Frame # req || INVALID_FUNCTION) && !(DA = SA && FC.Frame =req
&& FC.Function = FDL_status && Isochronous_mode)

=
RESM := empty, T_cnt :=0
171 [CHECK_T SRC_RECEIVE_ERROR.ind ACTIVE_I
/ In_ring_desired
=
T cnt:=0
172 [CHECK_T SRC_RECEIVE_TOKEN.ind (DA, SA) LISTEN

/DUPLICATE_ADDRESS && Dup_add_count > 0 && In_ring_desired

=

INIT_FCBV_LIST, INIT_LMS, RESM := empty, Dup_add_count := 0,
Fault_type := Duplicate_address, Second := 0, T_cnt:=0
MAC_BFAULT.ind (Fault_type)

61158-4-3 © IEC:2007(E)

-133 -

. [Current state

Event
Icondition
=action

Next state

173

CHECK_T

SRC_RECEIVE_TOKEN.ind (DA, SA)
/DUPLICATE_ADDRESS && Dup_add_count = 0 && In_ring_desired

=
Dup_add_count++, TOK_CNT_UPD, Second := 0, RESM := empty, T_cnt := 0,
TRT_ON

ACTIVE_I

174

CHECK_T

SRC_RECEIVE_TOKEN.ind (DA, SA)
/'DUPLICATE_ADDRESS && Tok_err_cnt > (Limit - 2) && In_ring_desired

=

INIT_FCBV_LIST, INIT_LMS, RESM := empty, Fault_type := Out_of_ring,
Second :=0, T_cnt:=0

MAC_BFAULT.ind (Fault_type)

LISTEN

175

CHECK_T

SRC_RECEIVE_TOKEN.ind (DA, SA)

/'DUPLICATE_ADDRESS && TOKEN_ERROR && Tok_err_cnt < (Limit - 2) &&
In_ring_desired

=

RESM := empty, LMS_UPDATE(DA, SA), TOK_CNT_UPD, Tok_err_cnt++,
Second := 0, T_cnt:=0, TRT_ON

ACTIVE_I

176

CHECK_T

SRC_RECEIVE_TOKEN.ind (DA, SA)
/'DUPLICATE_ADDRESS && ITOKEN_ERROR && LMS[SA] # DA && DA # TS
&& In_ring_desired

=
RESM := empty, LMS_UPDATE(DA, SA), TOK_CNT_UPD, Second := 0, T_cnt
:= 0, TRT_ON

ACTIVE_I

177

CHECK_T

SRC_RECEIVE_TOKEN.ind (DA, SA)
/'DUPLICATE_ADDRESS && ITOKEN_ERROR && LMS[SA] = DA && DA # TS
&& In_ring_desired

=
RESM := empty, TOK_CNT_UPD, Second := 0, T_cnt := 0, TRT_ON

ACTIVE_I

178

CHECK_T

SRC_RECEIVE_TOKEN.ind (DA, SA)
/'DUPLICATE_ADDRESS && !TOKEN_ERROR && DA = TS && LMS[SA] = DA
&& Tct=0 && H_list.Num_entry # 0 && In_ring_desired

=
RESM := empty, GAP_UPDATE, TTH_UPDATE, TOK_CNT_UPD, Second :=
0, Req_h_cnt := H_list.Num_entry, SETUP_HREQ, T_cnt := 0
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

USE_T

179

CHECK_T

SRC_RECEIVE_TOKEN.ind (DA, SA)

/'DUPLICATE_ADDRESS && !TOKEN_ERROR && DA = TS && LMS[LMS[SA]]
= DA && Second = 0 && In_ring_desired

=

RESM := empty, Second++, T_cnt := 0, TRT_ON

ACTIVE_I

180

CHECK_T

SRC_RECEIVE_TOKEN.ind (DA, SA)

/'DUPLICATE_ADDRESS && !TOKEN_ERROR && DA = TS && LMS[LMS[SA]]
= DA && Second > 0 && Tct=0 && H_list.Num_entry # 0 && In_ring_desired

=

RESM := empty, GAP_UPDATE, TTH_UPDATE, TOK_CNT_UPD,
LMS_UPDATE(DA, SA), Second := 0, Req_h_cnt := H_list.Num_entry,
SETUP_HREQ, T_cnt:=0

SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

USE_T

181

CHECK_T

SRC_RECEIVE_TOKEN.ind (DA, SA)

/'DUPLICATE_ADDRESS && !TOKEN_ERROR && DA = TS && LMS[DA] =
NIL && ((LMS[SA] > SA && LMS[SA] > TS && SA < TS) || (LMS[SA] < SA &&
((SA<TS) || (TS < LMS[SA])))) && In_ring_desired

=

RESM := empty, TTH_INIT, LMS_UPDATE(DA, SA), TOK_CNT_UPD, Second
:= 0, GAP_INIT(0), Fault_Type :=In_ring, T_cnt:=0, TRT_ON
MAC_BFAULT.ind (Fault_type)

ACTIVE_I

182

CHECK_T

SRC_RECEIVE_TOKEN.ind (DA, SA)
/'DUPLICATE_ADDRESS && !TOKEN_ERROR && DA = TS && LMS[SA] = DA
&& Tct=0 && H_list.Num_entry = 0 && In_ring_desired

=
RESM := empty, GAP_UPDATE, TTH_UPDATE, TOK_CNT_UPD, Second :=
0, Req_h_cnt := H_list.Num_entry, T_cnt := 0, TRT_ON

CHECK_A

- 134 - 61158-4-3 © IEC:2007(E)

Event

No. |Current state Icondition Next state
=action

183 [CHECK_T SRC_RECEIVE_TOKEN.ind (DA, SA) CHECK_A

/'DUPLICATE_ADDRESS && !TOKEN_ERROR && DA = TS && LMS[LMS[SA]]
= DA && Second > 0 && Tct=0 && H_list.Num_entry = 0 && In_ring_desired

=
RESM := empty, GAP_UPDATE, TTH_UPDATE(DA, SA), TOK_CNT_UPD,
LMS_UPDATE, Second := 0, Req_h_cnt := H_list.Num_entry, T_cnt := 0,
TRT_ON

184 |CHECK_T SRC_RECEIVE_TOKEN.ind (DA, SA) WAIT_TCT
/'DUPLICATE_ADDRESS && ITOKEN_ERROR && DA = TS && LMS[SA] = DA
&& Tct > 0 && In_ring_desired

=

RESM := empty, GAP_UPDATE, TTH_UPDATE, TOK_CNT_UPD, Second :=
0, Req_h_cnt := H_list.Num_entry, DA,SA:=TS, FC.Function := FDL_status,
FC.Frame:=req, DLSDU,SSAP,DSAP:=NIL, T_cnt := 0, TRT_OFF
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

185 |CHECK_T SRC_RECEIVE_TOKEN.ind (DA, SA) WAIT_TCT
/'DUPLICATE_ADDRESS && ITOKEN_ERROR && DA = TS && LMS[LMS[SA]]
= DA && Second > 0&& Tct > 0 && In_ring_desired

=

RESM := empty, GAP_UPDATE, TTH_UPDATE(DA, SA), TOK_CNT_UPD,
LMS_UPDATE, Second := 0, Req_h_cnt := H_list. Num_entry, DA,SA:=TS,
FC.Function := FDL_status, FC.Frame:=req, DLSDU,SSAP,DSAP:=NIL,T_cnt
=0, TRT_OFF

SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

186 [CHECK_T SRC_RECEIVE_TOKEN.ind (DA, SA) ACTIVE_I
/'DUPLICATE_ADDRESS && !TOKEN_ERROR && DA = TS &&
('LMS[LMS[SA]]=DA && !(LMS[DA] = NIL && ((LMS[SA] > SA && LMS[SA] >
TS && SA < TS) || (LMS[SA] < SA && ((SA < TS) || (TS < LMS[SA])))) &&
In_ring_desired

=

RESM := empty, LMS_UPDATE(DA, SA), TOK_CNT_UPD, Second :=0,

T cnt:=0, TRT_ON

187 [CHECK_T SRC_RECEIVE_TOKEN.ind (DA, SA) PASSIVE_I
NIn_ring_desired
=

Fault_Type := Double_token, T_cnt := 0
MAC_BFAULT.ind (Fault_type)

188 [CHECK_T SRC_SEND_DATA.cnf OFFL
=

Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)

189 |CHECK_T |SRC_SEND_TOKEN.cnf(Status) OFFL

=
Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)

190 [CHECK_T SRC_SLOT_EVENT.ind PASS_T
/Retry_cnt < 2

=
DS := NS(TS), SA := TS, Retry_cnt++
SRC_SEND_TOKEN.req (DA, SA)

191 |CHECK_T SRC_SLOT_EVENT.ind PASS_T
/Retry_cnt = 2

=
EX_LMS (NS), Retry_cnt := 0, DS := NS(TS), SA := TS
SRC_SEND_TOKEN.req (DA, SA)

192 [CHECK_T SRC_SYNI_EVENT.ind ACTIVE_I
/ In_ring_desired

=

Fault_type := Not_synchronized, T_cnt := 0
MAC_BFAULT.ind (Fault_type)

61158-4-3 © IEC:2007(E)

- 135 -

. [Current state

Event
Icondition
=action

Next state

193

AW_STATUS

MAC_RESET.req

=
RESET_HL_LIST
MAC_RESET.cnf

OFFL

194

AW_STATUS

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)
/(FC.Frame =req || (FC.Function # SC && DA = TS))

=
Fault_type := Double_token, NEXT_GAP, T_cnt:=0
MAC_BFAULT.ind (Fault_type)

ACTIVE_I

195

AW_STATUS

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)
/FC.Frame = rsp && DA = TS && SA=GAP_address && FC.Function = OK &&
FC.Stn-Type = M_rdy

=
DA := SA, SA := TS, LMS_UPDATE(DA, SA), GAP_INIT(NIL), T_cnt:=0
SRC_SEND_TOKEN.req (DA, SA)

PASS_T

196

AW_STATUS

SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU)

/FC.Frame = rsp && (DA =TS || FC.Function = SC) && (FC.Function # OK ||
FC.Stn-Type # M_rdy)

=

NEXT_GAP , T_cnt:=0

SRC_SEND_TOKEN.req (DA, SA)

CHECK_A

197

AW_STATUS

SRC_RECEIVE_ERROR.ind
/RECV_ERR_cnt > RECV_ERR_limit
=

T cnt:=0

LISTEN

198

AW_STATUS

SRC_RECEIVE_ERROR.ind
/RECV_ERR_cnt < RECV_ERR_limit
=

NEXT_GAP , T_cnt:=0

CHECK_A

199

AW_STATUS

SRC_RECEIVE_TOKEN.ind (DA, SA)
/In_ring_desired

=
Fault_type := Double_token, NEXT_GAP, T_cnt:=0
MAC_BFAULT.ind (Fault_type)

ACTIVE_I

200

AW_STATUS

SRC_SEND_DATA.cnf

=

Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)

OFFL

201

AW_STATUS

SRC_SEND_TOKEN.cnf(Status)
=

Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)

OFFL

202

AW_STATUS

SRC_SLOT_EVENT.ind

=
NEXT_GAP

CHECK_A

203

AW_STATUS

SRC_SYNI_EVENT.ind
/In_ring_desired

=
Fault_type := Not_synchronized, NEXT_GAP
MAC_BFAULT.ind (Fault_type)

ACTIVE_I

204

PASSIVE_I

/H_List.Num_entry = 0

=
SETUP_HCON_DS

PASSIVE_I

205

PASSIVE_I

/L_List.Num_entry = 0

=
SETUP_LCON_DS

PASSIVE_I

206

PASSIVE_I

MAC_RESET.req
=

RESET_HL_LIST
MAC_RESET .cnf

OFFL

- 136 - 61158-4-3 © IEC:2007(E)

Event

No. |Current state Icondition Next state
=action

207 [PASSIVE_I SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) PASSIVE_I

/DA = TS && FC.Frame = req && FC.Function = FDL_status

=

DLSDU,SSAP,DSAP:=NIL, FC.Frame := rsp, FC.Stn-Type := Slave,
FC.Function := OK, RESM := empty, T_cnt:=0
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

208 [PASSIVE_I |SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) PASSIVE_I
/DA = TS && FC.Frame = req && FC.Function = Ident
=

DA := SA, SA := TS, DSAP <:= SSAP, RESM := empty, IDENT, T_cnt:=0
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

209 [PASSIVE_I |SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) PASSIVE_I
/DA =TS && FC.Frame = req && FC.Function = LSAP_status

=

DA := SA, SA := TS, DSAP <:= SSAP, RESM := empty, LSAP_STATUS,
T cnt:=0

SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

210 |PASSIVE_I [SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) PASSIVE_|
/(DA=127) && FC.Frame = res && SAP_CHECK(DSAP) && B_BUF(DSAP)
=

RESM := empty, SETUP_SIND(0,NO), T_cnt := 0

211 [PASSIVE_I |SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) PASSIVE_I
/(DA =127) && FC.Frame = res && (!SAP_CHECK(DSAP) || !B_BUF(DSAP))
=

RESM := empty, T_cnt :=0

212 [PASSIVE_I |SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) PASSIVE_I
/(DA =TS || DA =127) && FC.Frame = req && (FC.Function =TE || FC.Function
= CV) && SAP_CHECK(CS) && I_BUF(CS)

=
RESM := empty, SETUP_IND(0,NO), T_cnt := 0, TRT_ON

213 |PASSIVE_I |SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) PASSIVE_|
/(DA=TS || DA =127) && FC.Frame = req && (FC.Function = CV ||
FC.Function = TE) && (!SAP_CHECK(CS) || !I_BUF(CS))

=
RESM := empty, T_cnt := 0, TRT_ON

214 |PASSIVE_I [SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) PASSIVE_|
/(DA=TS || DA =127) && FC.Frame = req && (FC.Function = SDN_H ||
FC.Function = SDN_L) && SAP_CHECK(DSAP) && |_BUF(DSAP)

=
RESM := empty, SETUP_IND(0,NO), T_cnt := 0

215 |PASSIVE_I |SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) PASSIVE_|
/(DA'=TS || DA =127) && FC.Frame = req && (FC.Function = SDN_H ||
FC.Function = SDN_L) && (ISAP_CHECK(DSAP) || !|_BUF(DSAP))

=
RESM := empty, T_cnt :=0

216 [PASSIVE_I |SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) PASSIVE_I
/DA =TS && FC.Frame = req && (FC.Function = SDA_L || FC.Function =
SDA_H || FC.Function = SRD_L || FC.Function = SRD_H || FC.Function =
SRD_BCT) && RETRY

=

DA := RESM.DA, SA := TS, FC := RESM.FC, DSAP := RESM.DSAP, SSAP :=
RESM.SSAP, DLSDU := RESM.DLSDU, T_cnt:=0

SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

217 [PASSIVE_I SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) PASSIVE_I
/DA =TS && FC.Frame = req && (FC.Function = SDA_H || FC.Function =
SDA_L) && 'RETRY && SAP_CHECK(DSAP) && I_BUF(DSAP)

=

SETUP_IND(0,NO), DA := NIL, SA := NIL, FC.Function := OK,
DLSDU,SSAP,DSAP:=NIL, SETUP_RESM, T_cnt :=0
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)

61158-4-3 © IEC:2007(E) - 137 -

Event
No. [Current state Icondition Next state
=action
218 [PASSIVE_I |SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) PASSIVE_I
/DA =TS && FC.Frame = req && (FC.Function = SDA_L || FC.Function =
SDA_H) && 'RETRY && SAP_CHECK(DSAP) && !I_BUF(DSAP)
=
RESM := empty, DA := SA, SA := TS, FC.Frame := rsp, SETUP_STN_TYPE,
FC.Function := RR, DLSDU,SSAP,DSAP:=NIL, T_cnt:= 0
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)
219 [PASSIVE_I SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) PASSIVE_]I
/DA = TS && FC.Frame = req && (FC. Funct|on = SRD_H || FC.Function =
SRD_BCT || FC.Function = SRD_L) && IRETRY && SAP_CHECK(DSAP) &&
|_BUF(DSAP) && U_BUF(DSAP)
=
SETUP_REPLY,
if(SAP_List[DSAP].Indication_Mode = ALL || Upd_status # NO)
SETUP_IND(Ref, Upd_status),
DA := R_DA, SA := TS, FC.Function := Upd_status,
FC.Frame := rsp, SETUP_STN_TYPE, DSAP <> SSAP,
DLSDU := R_SDU, SETUP_RESM, T_cnt:=0
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)
220 [PASSIVE_I |SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) PASSIVE_I
/DA = TS && FC.Frame = req && (FC.Function = SRD_H || FC.Function =
SRD_BCT || FC.Function = SRD_L) && !RETRY && SAP_CHECK(DSAP) &&
II_BUF(DSAP) && U_BUF(DSAP)
=
SETUP_REPLY,DA := R_DA, SA := TS,
FC.Function := R_FUNCTION, FC.Frame := rsp,
SETUP_STN_TYPE, DSAP <:= SSAP,
DLSDU := R_SDU, T_cnt:=0
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)
221 [PASSIVE_I SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) PASSIVE_I
/DA = TS && FC.Frame = req && (FC. Funct|on = SRD_H || FC.Function =
SRD_BCT || FC.Function = SRD_L) && IRETRY && SAP_CHECK(DSAP) &&
|_BUF(DSAP) && 'U_BUF(DSAP)
=
SETUP_IND(0,NO), FC.Function := SC, SETUP_RESM, T_cnt:=0
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)
222 [PASSIVE_I SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) PASSIVE_I
/DA =TS && FC.Frame = req && (FC.Function = SRD_H || FC.Function =
SRD_BCT || FC.Function = SRD_L) && IRETRY && SAP_CHECK(DSAP) &&
'I_BUF(DSAP) && 'U_BUF(DSAP)
=
RESM := empty, DA := SA, SA := TS, FC.Frame := rsp, SETUP_STN_TYPE,
FC.Function := RR, DLSDU,SSAP,DSAP:=NIL, T_cnt:= 0
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)
223 [PASSIVE_I SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) PASSIVE_I
/DA =TS && FC.Frame = req && (FC.Function = SRD_H || FC.Function =
SRD_BCT || FC.Function = SRD_L || FC.Function = SDA H || FC.Function =
SDA_L) && !RETRY && ISAP_CHECK(DSAP)
=
RESM := empty, DA := SA, SA := TS, FC.Frame := rsp, SETUP_STN_TYPE,
FC.Function := RS, DLSDU,SSAP,DSAP:=NIL, T_cnt:=0
SRC_SEND_DATA.req (DA, SA, FC, DSAP, SSAP, DLSDU)
224 [PASSIVE_I |SRC_RECEIVE_DATA.ind (DA, SA, FC, DSAP, SSAP, DLSDU) PASSIVE_I
/(DA # TS && (DA#127 || (FC.Function # SDN_H && FC.Function = SDN_L))
|| (FC.Frame # req && (DA = 127) || INVALID_FUNCTION)
=
RESM := empty, T_cnt :=0
225 [PASSIVE_I SRC_RECEIVE_ERROR.ind PASSIVE_I
=
T cnt:=0
226 [PASSIVE_I SRC_RECEIVE_TOKEN.ind (DA, SA) PASSIVE_I
=

RESM := empty, T_cnt :=0

- 138 — 61158-4-3 © IEC:2007(E)
Event
No. |Current state Icondition Next state
=action
227 |PASSIVE_I SRC_SEND_DATA.cnf PASSIVE_]
=
228 |PASSIVE_I SRC_SEND_TOKEN.cnf(Status) OFFL
=
Fault_type := State_conflict
MAC_LFAULT.ind (Fault_type)
229 |PASSIVE_I SRC_SLOT_EVENT.ind PASSIVE_]I
NTIME_OUT
=
T _cnt ++
230 |PASSIVE_I SRC_SLOT_EVENT.ind PASSIVE_|
/TIME_OUT
=
Fault_type := Time_out, T_cnt := 0
MAC_BFAULT.ind (Fault_type)
231 |PASSIVE_I SRC_SYNI_EVENT.ind PASSIVE_]

=
Fault_type := Not_synchronized, T_cnt := 0
MAC_BFAULT.ind (Fault_type)

61158-4-3 © IEC:2007(E)

A.5.4 Functions

- 139 -

All functions of the MAC are summarized in Table A.16.

Table A.16 — MAC function table

Function name

Operations

IDENT

- Prepares Ident-Response
send Ident data, if Ident buffer available

send SC, if no Ident buffer

LSAP_STATUS

- Prepares ldent-Response
send LSAP data, if LSAP-status buffer available
send SC, if no LSAP-status buffer

INIT_FCBV_LIST

FCVI[0..126]:= 0, FCB[0..126]:= 1

INIT_LMS

LMS[0..126]:= NIL
Tok_err_cnt:=0, Tok_cnt:=255
First :=NIL, LMS_cnt:=0

BUILD_LMS(Ad)

LMS[0..126]:= NIL, LMS[Ad]:=Ad

LMS_UPDATE if(DA < LMS[SA] < SA || SA < DA < LMS[SA] || LMS[SA] < SA < DA)
LMS[DA] := LMS[SA], LMS[SA] := DA
else if (DA = LMS[LMS[SA]]) LMS[LMS[SA]] := NIL, LMS[SA] :=DA
else Tok_err_cnt++

EX_LMS (Ad) LMS[TS]:= LMS[Ad], LMS[Ad]:=NIL

TOK_CNT_UPD

if (Tok_cnt--=0) Tok_cnt:=255, Tok_err_cnt:=0, Dup_add_cnt:=0

DUPLICATE_ADDRESS

SA =TS || SA > HSA || DA > HSA

TOKEN_ERROR

LMS[SA] := NIL

FCB_UPDATE

FCB[DAJ:= not FCB[DA], FCV[DA]:=1

FCV_CLEAR

FCV[DA]:=0, FCB[DA]:=1

SETUP_STN_TYPE

if (In_ring_desired = FALSE) FC.Stn-Type:=Slave
else if (LMS[TS] = NIL) FC.Stn-Type:=M_rdy
else FC.Stn-Type:=M_in_ring

R_FUNCTION

if (Upd_sts=DL) FC.Function:=RDL
else FC.Function:=RDH

SETUP_RESM

RESM.DA := DA
RESM.DSAP := DSAP
RESM.SSAP := SSAP
RESM.FC := FC
RESM.DLSDU := DLSDU

RETRY

RESM=#NIL && RESM.SA=SA && DA=TS && FCV[DA]=1 && FC.FCV=1 &&

FCB[DA]=FC.FCB

- 140 - 61158-4-3 © IEC:2007(E)

Function name

Operations

SETUP_HREQ

H_List.Num_entry--

REQM.DA,DA := H_List.First_Entry.DA

REQM.DSAP,DSAP := H_List.First_Entry.DSAP

REQM.SSAP,SSAP := H_List.First_Entry.SSAP

FC := H_List.First_Entry.FC

REQM.DLSDU,DLSDU := H_List.First_Entry.DLSDU

Cnf := H_List.First_Entry.conf

REQM.serv_class := high

SA:=TS

if (FC.Function# FDL_Status, Ident, LSAP_Status, SDN_H, SDN_L)
(FC.FCB:=FCBJ[DA], FC.FCV:=FCVI[DA])

else (FC.FCB:=0, FC.FCV:=0)

FC.Frame:=req

REQM.FC:=FC

H_List.Remove()

SETUP_LREQ

L_List.Num_entry--

REQM.DA,DA := L_List.First_Entry.DA

REQM.DSAP,DSAP := L_List.First_Entry.DSAP

REQM.SSAP,SSAP := L_List.First_Entry.SSAP

FC := L_List.First_Entry.FC

REQM.DLSDU,DLSDU := L_List.First_Entry.DLSDU

Cnf := L_List.First_Entry.conf

REQM.serv_class := low

SA:=TS

if (FC.Function# FDL_Status, Ident, LSAP_Status, SDN_H, SDN_L)
(FC.FCB:=FCBI[DA], FC.FCV:=FCV[DA])

else (FC.FCB:=0, FC.FCV:=0)

FC.Frame:=req

REQM.FC:=FC

L_List.Remove()

SETUP_CONM(Err_type)

C_List.Insert()

C_List.Last_Entry.DA := REQM.DA
C_List.Last_Entry.DSAP := REQM.DSAP
C_List.Last_Entry.SSAP := REQM.SSAP
C_List.Last_Entry.serv_class := REQM.serv_class
C_List.Last_Entry.FC := Err_type
C_List.Last_Entry.DLSDU := NIL

C_List.Num_entry++

RESET_HL_LIST

while (H_List.Num_entry # 0) SETUP_HCON_DS
while (L_List.Num_entry # 0) SETUP_LCON_DS

61158-4-3 © IEC:2007(E) -141 -

Function name

Operations

SETUP_HCON_DS

H_List.Num_entry--

C_List.Insert()

C_List.Last_Entry.DA := H_List.First_Entry.DA
C_List.Last_Entry.DSAP := H_List.First_Entry.DSAP
C_List.Last_Entry.SSAP := H_List.First_Entry.SSAP
C_List.Last_Entry.serv_class := H_List.First_Entry.serv_class
C_List.Last_Entry.FC:= H_List.First_Entry.FC
C_List.Last_Entry.Status:= DS

C_List.Num_entry++

H_List.Remove()

SETUP_LCON_DS

L_List.Num_entry--

C_List.Insert()

C_List.Last_Entry.DA := L_List.First_Entry.DA
C_List.Last_Entry.DSAP := L_List.First_Entry.DSAP
C_List.Last_Entry.SSAP := L_List.First_Entry.SSAP
C_List.Last_Entry.serv_class := L_List.First_Entry.serv_class
C_List.Last_Entry.FC:= L_List.First_Entry.FC
C_List.Last_Entry.Status:= DS

C_List.Num_entry++

L_List.Remove()

SETUP_CON(FC,DLSDU)

C_List.Insert()

C_List.Last_Entry.DA := REQM.DA
C_List.Last_Entry.DSAP := REQM.DSAP
C_List.Last_Entry.SSAP := REQM.SSAP
C_List.Last_Entry.serv_class := REQM.serv_class
C_List.Last_Entry.FC:= REQM.FC
C_List.Last_Entry.DLSDU := DLSDU
C_List.Last_Entry.Status:= FC

C_List.Num_entry++

SETUP_IND(Ref,Upd_sts)

SAP_List[DSAP].Ibuffer.Num_entry--
I_List.Insert()

|_List.Last_Entry.DA := DA
|_List.Last_Entry.SA := SA
|_List.Last_Entry.DSAP := DSAP
|_List.Last_Entry.SSAP := SSAP
|_List.Last_Entry.FC := FC
|_List.Last_Entry.DLSDU := DLSDU
|_List.Last_Entry. Status := Upd_sts
|_List.Last_Entry.Reference := Ref
I_List.Num_entry++

SAP_List[DSAP].Ibuffer.Remove()

—142 -

61158-4-3 © IEC:2007(E)

Function name

Operations

SETUP_SIND(Ref,Upd_sts)

SAP_List[DSAP].Sbuffer.Num_entry--
I_List.Insert()

I_List.Last_Entry.DA := DA
|_List.Last_Entry.SA := SA
|_List.Last_Entry.DSAP := DSAP
|_List.Last_Entry.SSAP := SSAP
|_List.Last_Entry.FC := FC
|_List.Last_Entry.DLSDU := DLSDU
|_List.Last_Entry. Status := OK
I_List.Num_entry++

SAP_List[DSAP].Sbuffer.Remove()

SAP_CHECK (DSAP)

(SA= SAP_List[DSAP].Access || SAP_List[DSAP].Access=NIL) &&
(FC.Function is in SAP_List{[DSAP].Function_List_R) &&
DLSDU.Len < SAP_List[DSAP].LenList[FC.Function]

|_BUF(DSAP)

SAP_List[DSAP]. Ibuffer.First_Entry = NIL

B_BUF(DSAP)

SAP_List[DSAP]. Sbuffer.First_Entry # NIL

U_BUF(DSAP)

SAP_List[DSAP]. Ubuffer.High_buffer = NIL ||
SAP_List[DSAP]. Ubuffer.Low_buffer = NIL

SETUP_REPLY

if (FC.Function = SRD_BCT) R_DA=127
else R_DA=SA

If (SAP_List[DSAP]. Ubuffer.High_buffer.Len # 0)
(Upd_sts := DH, Ref := SAP_List[DSAP]. Ubuffer.High_reference,
R_SDU := SAP_List[DSAP]. Ubuffer.High_buffer,
if(SAP_List[DSAP].Ubuffer.High_transmit = SINGLE) SAP_List[DSAP].

Ubuffer.High_buffer=NIL)

else(Upd_sts := DL, Ref := SAP_List[DSAP]. Ubuffer.Low_reference,
R_SDU := SAP_List[DSAP]. Ubuffer.Low_buffer,
if(SAP_List[DSAP].Ubuffer.Low_transmit = SINGLE) SAP_List[DSAP].

Ubuffer.Low_buffer=NIL)

DECODE(func) if (func = SDN_H) (Service := SDN, Serv_class := High)
if (func = SDA_H) (Service := SDA, Serv_class := High)
if (func = SRD_H) (Service := SRD, Serv_class := High)
if (func = SDN_L) (Service := SDN, Serv_class := Low)
if (func = SDA_L) (Service := SDA, Serv_class := Low)
if (func = SRD_L) (Service := SRD, Serv_class := Low)

TIME_OUT (In_ring_desired=true && T_cnt = 2*TS+5) ||

(In_ring_desired=false && T_cnt = 259)

INVALID_ FUNCTION

FC.Function = 0 || FC.Function
FC.Function = 8 || FC.Function

1]] FC.Function = 2 || FC.Function = 7 ||
10 || FC.Function = 11

GAP_INIT

Gap_to_do := true

GAP_address := (TS + 1) mod (HSA + 1)

if (GAP_address = LMS [TS]) GAP_to_do := false, Gud_timer := Tgud

61158-4-3 © IEC:2007(E) - 143 -

Function name Operations

NEXT_GAP GAP_Ip_cnt := NIL
GAP_address := (GAP_address + 1) mod (HSA + 1)
if (GAP_address = LMS [TS]) GAP_to_do := false, Gud_timer := Tgud

GAP_UPDATE Gud_timer := Gud_timer - Ttr,
if (GAP_to_do && GAP_Ip_cnt = NIL) GAP_Ip_cnt := L_list.Num_entry,
if {GAP_to_do && Gud_timer<0)
(GAP_address := (TS + 1) mod (HSA + 1)
if (GAP_address = LMS [TS]) GAP_to_do := false, Gud_timer := Tgud

TTH_INIT Trr := Ttr, TRT.start(Ttr)

TTH_UPDATE Trr :=Ttr-TRT.cv, TRT.start(Ttr)

TTH_AVAILABLE Trr < TRT.cv

TRT_ON if (TRT.stopped) TRT.start(Trr)

TRT_OFF TRT.stop, Trr := TRT.cv, TRT.stopped:= TRUE
A.6 SRU

A.6.1 Overview

SRU contains the following parts:

a) Message oriented Main-SM (SRC)
b) Character Receive SM (CRX)

c) Timer-SM (TIM)

d) Character Send SM (CTX).

Machine internal communication is done without any time delay.

The CTX and CRX machines are used only in asynchrounous mode to transfer a bit oriented
stream in a character oriented stream. This task can be done with standard components
(called Universal Asynchrounous Receiver / Transmitter) and are not described further. The
CRX (together with the physical receive units) shall allow a distortion of the input signal of

+/- 10 %.

The timer module is also a standard component that just implements the required timers. The
Wait-service selects the specific idle-timers. The respective timer is started with Startldle and

Start. The other timer services are used to indicate the expiration of timers.

The SRC is responsible for coding/encoding of DLPDUs. This module is reponsible for the
transmission procedures as well (see clause 21 for further description for send receive

procedures).

Both the asynchronous and the synchronous interfaces are shown in Figure A.2.

- 144 — 61158-4-3 © IEC:2007(E)

SRC

Wait.req

Startldle.req

Start.req Enable Recv.req
Tsyn exp.ind Disable Recv.req
Tid exp.ind Recv Char.ind

Recv Error.ind

PH-DATA req/cnf
v Ph-DATA ind

Timer exp.ind
Tslot exp.ind
Tsyni exp.ind

Disable Send.req
Send Char.reg/cnf
A

A

CTX TIM

DATA.ind
O
AJ
X

Ph-ASYN-DATA ind

Ph-ASYN-DATA req

A

ASYN Ph Layer SYN Ph Layer

(Bitstream) (Octetstream)

Figure A.2 — Structure of the SRU Machine

A.6.2 Character send SM(CTX)

This state machine implements an UART which has the ability to send without gaps between
stop-bit and preceding start-bit. In conjunction with the underlying physical layer it produces a
maximum of less than 0,3 % deviation of the nominal data rate. For data rates of 1 500 kbit/s
and higher the maximum clock drift of £ 0,03 % should not be exceeded.This model describes
a SRC which gets an indication after a complete character has been send (this model implies
a zero delay between SRC and CTX). Real devices may implement a double buffering which
has influence on the termination of a send sequence (a sender empty indication is required).

Interface to SRC:

— Send_Char.req/.cnf
— Disable_Send.req

A.6.3 Character receive SM (CRX)

This state machine implements an UART which has the ability to receive without gaps
between stop-bit and preceding start-bit. It has to detect stop-bit and parity errors. Together
with the underlying physical layer it has to detect at least signals with 10 % distortion
correctly. If there is a signal change detectible by the underlying physical layer within 10 %
and 90 % of the signal, the resulting bit-value is undefined.

When a change to start signal without an valid character is detected with enabled receiver the
CRX has to report an error to the SRC. It has be at least as sensitive as the Timer-SM (a
trigger for the timer must trigger the receiver as well).

Interface to SRC:

— Receive_Char.ind
— Enable_Recv.req
— Disable_Recv.req

— Receive_Error.ind

61158-4-3 © IEC:2007(E) - 145 -

A.6.4 Timer-SM (TIM)

The timer module implements three different timers.

One Timer is used for one shot events and will be started by the SRC with a start.req
primitive.

Two Timers start when the receiver is disabled or the bus changes from active (logical 0) to
inactive (logical 1).

Timer for Tsyn/Tid

This timer is set to 0 when receiver is enabled and the signal is ZERO. If a synchronous Ph
Layer is used the timer is loaded with Startldle.req.

Two thresholds will produce indications:

— the threshold Tsyn is a fixed value;
— the threshold Tid will be loaded according to Tid1/Tid2 with the wait.req primitive.

Timer for Tsyni/Tslot

This timer is reloaded with Tslot -Tsyn when Tsyn-timer expires
This timer is reloaded with Tslot when this timer expires with Tslot
This timer is reloaded with Tsyn, when the receiver becomes active

Interface to SRC:

— Tsyn_exp.ind
— Tid_exp.ind
— Tslot_exp.ind
— Tsyni_exp.ind
— Timer_exp.ind
— Wait.req

— Start.req

— Startldle.req

CTX, CRX and TIM are not described as state machines.

A.6.5 Primitive definition of SRC
A.6.5.1 Primitives exchanged between DLM and SRC

This interface is not worked out further. The primitives issued by the DLM to the SRC are
shown in Table A.17.

Table A.17 — Primitives issued by DLM to SRC

Associated

Primitive name
parameters

SRC_RESET.req (none)

Primitives Exchanged between SRC and DLM.

- 146 - 61158-4-3 © IEC:2007(E)

This interface is not described in detail. The primitives issued by the SRC to the DLM are
shown in Table A.18.

Table A.18 — Primitives issued by SRC to DLM

Lo Associated
Primitive name
parameters
SRC_RESET.cnf (none)
MAC_LFAULT.ind Fault_type
MAC_BFAULT.ind Fault_type

A.6.5.2 Primitives exchanged between MAC and SRC

The primitives issued by the MAC to the SRC are shown in Table A.19.

Table A.19 — Primitives issued by MAC to SRC

Associated

Primitive name
parameters

SRC_SEND_TOKEN.req | DA,

SRC_SEND_DATA.req DA,

The primitives issued by the SRC to the MAC are shown in Table A.20.

Table A.20 — Primitives issued by SRC to MAC

Lo Associated
Primitive name
parameters
SRC_SEND_TOKEN.cnf Status
SRC_SEND_DATA.cnf (none)
SRC_RECEIVE_DATA.ind DA,
SA,
FC,
DSAP,
SSAP,
DLSDU
SRC_RECEIVE_TOKEN.ind | DA,
SA
SRC_RECEIVE_ERROR.ind [(none)
SRC_SLOT_EVENT.ind (none)
SRC_SYNI_EVENT.ind (none)

A.6.5.3 Parameters of SRC Primitives

All parameters used with primitives exhcanged between the MAC and the SRC are shown in
Table A.21.

61158-4-3 © IEC:2007(E) - 147 -

Table A.21 — Parameters used with primitives exchanged between MAC and SRC

Parameter name Description
DA Station address of the receiving unit
SA Station address of the sending unit
FC The FC structure is described in
Table A.22
DSAP Identifier of a remote Service Access Point
SSAP Identifier of the local Service Access Point
DLSDU Data unit of a DLS-user
Status Status of the service execution
Table A.22 — FC structure
FC.frame FC.function FCB,FCV FC.stn-type
req SDN_H,SDN_L, SDA_H, SDA_L, 0,0: all services
SRD_H, SRD_L, TE, CV, 0,1: SYN for SRD,SDA
FDL_Status, LSAP_Status, Ident 1,0: normal Op. SDA,SRD
1,1: normal Op. SDA,SRD
rsp OK, RS, RR, DL, DH, NR, RDL, RDH, SC Slave, M_n_rdy,
M_rdy, M_in_ring

A.6.6 State machine description

The Send Receive Control forms messages out of a stream of data offered by the Physical
Layer and vice versa. The SRC supports both Synchronous and Asynchronous Physical
layers.

The local variables of the SRC are shown in Table A.23.

Table A.23 - Local variables of SRC

Name Type Range Remark
SDNM Bool |[— SDN Marker = SDN (was) executed
SType Enum [(I/R) Send type (Initiator/Response)
DAE us 0,0x80 |Address Extension
SAE us 0,0x80 Address Extension
F us — FC-Field
Fcs us — Checksum
Char us — —
I us — —
j us8 — —
TOK Bool |— Marker Token was sent
RxSD Bool |[— Marker SD was received
SDdata us — Storage of SD
C1,C2 us — FCS components

- 148 — 61158-4-3 © IEC:2007(E)

A.6.7 SRC state table

The state table of the SRC is shown in Table A.24.

Table A.24 — SRC state table

Current Event
No. Icondition Next state

state .
=action

1 |any-state SRC_RESET.req OFFL
/Data_rate = NIL

=
SRC_RESET.cnf

2 |any-state SRC_RESET.req Idle
/'PHSYN && Data_rate = NIL

=
SRC_RESET.cnf

3 |any-state SRC_RESET.req AW_SD
/PHSYN && Data_rate = NIL

=
SRC_RESET.cnf, Startldle.req

4 [ldle Tsyn_exp.ind AW_SD
=
Enable_Recv.req

5 [Idle Tid_exp.ind Idle
=

6 [ldle Tsyni_exp.ind Idle
=
SRC_SYNI_EVENT.ind

7 |idle SRC_SEND_TOKEN.req (DA,SA) SND_SD4

=
SDNM := FALSE
Wait.req (Tid1)

8 |ldle SRC_SEND_DATA.req (DA,SA,FC,DSAP,SSAP,DLSDU) ISND_SD1
/DLSDU.Len = 0 && DSAP = NIL && SSAP = NIL && FC.Frame = req && SDNM
= FALSE

=

SET_SDNM(FC.Function)

Wait.req (Tid1)

9 |ldle SRC_SEND_DATA.req (DA,SA,FC,DSAP,SSAP,DLSDU) ISND_SD2
/(DLSDU.Len = 0 || DSAP = NIL || SSAP = NIL) && FC.Frame = req && SDNM =
FALSE

=

SET_DAE, SET_SAE, SET_SDNM(FC.Function), j:=(SAE+DAE)/0x80+3
Wait.req (Tid1)

10 [ldle SRC_SEND_DATA.req (DA,SA,FC,DSAP,SSAP,DLSDU) ISND_SD1
/DLSDU.Len = 0 && DSAP = NIL && SSAP = NIL && FC.Frame = req && SDNM
= TRUE

=
SET_SDNM(FC.Function)
Wait.req (Tid2)

11 |ldle SRC_SEND_DATA.req (DA,SA,FC,DSAP,SSAP,DLSDU) ISND_SD2
/(DLSDU.Len = 0 || DSAP = NIL || SSAP = NIL) && FC.Frame = req && SDNM =
TRUE

=
SET_DAE, SET_SAE, SET_SDNM(FC.Function), j:=(SAE+DAE)/0x80+3
Wait.req (Tid2)

12 |(ldle SRC_SEND_DATA.req (DA,SA,FC,DSAP,SSAP,DLSDU) RSND_SD1
/DLSDU.Len = 0 && DSAP = NIL && SSAP = NIL && FC.Frame = rsp &&
FC.Function # SC

=

SDNM := FALSE

61158-4-3 © IEC:2007(E) - 149 —

c t Event
No. urren Icondition Next state
state .
=action
13 |ldle SRC_SEND_DATA.req (DA,SA,FC,DSAP,SSAP,DLSDU) RSND_SD2
/(DLSDU.Len # 0 || DSAP = NIL || SSAP = NIL) && FC.Frame = rsp
=
SET_DAE, SET_SAE, SDNM := FALSE , j:=(SAE+DAE)/0x80+3
14 |ldle SRC_SEND_DATA.req (DA,SA,FC,DSAP,SSAP,DLSDU) SND_SC
/FC.Frame = rsp && FC.Function = SC
=
SDNM := FALSE
15 |AW_SD SRC_SEND_TOKEN.req (DA,SA) SND_SD4
=
SDNM := FALSE
Wait.req (Tid1)
16 |AW_SD SRC_SEND_DATA.req (DA,SA,FC,DSAP,SSAP,DLSDU) ISND_SD1
/DLSDU.Len = 0 && DSAP = NIL && SSAP = NIL && FC.Frame = req && SDNM
= FALSE
=
SET_SDNM(FC.Function)
Disable_Recv.req
Wait.req (Tid1)
17 |AW_SD SRC_SEND_DATA.req (DA,SA,FC,DSAP,SSAP,DLSDU) ISND_SD2
/(DLSDU.Len # 0 || DSAP = NIL || SSAP # NIL) && FC.Frame = req && SDNM =
FALSE
=
SET_DAE, SET_SAE, SET_SDNM(FC.Function), j:=(SAE+DAE)/0x80+3
Disable_Recv.req
Wait.req (Tid1)
18 |AW_SD SRC_SEND_DATA.req (DA,SA,FC,DSAP,SSAP,DLSDU) ISND_SD1
/DLSDU.Len = 0 && DSAP = NIL && SSAP = NIL && FC.Frame = req && SDNM
= TRUE
=
SET_SDNM(FC.Function)
Disable_Recv.req
Wait.req (Tid2)
19 |AW_SD SRC_SEND_DATA.req (DA,SA,FC,DSAP,SSAP,DLSDU) ISND_SD2
/(DLSDU.Len # 0 || DSAP = NIL || SSAP # NIL) && FC.Frame = req && SDNM =
TRUE
=
SET_DAE, SET_SAE, SET_SDNM(FC.Function), j:=(SAE+DAE)/0x80+3
Disable_Recv.req
Wait.req (Tid2)
20 [AW_SD SRC_SEND_DATA.req (DA,SA,FC,DSAP,SSAP,DLSDU) RSND_SD1
/DLSDU.Len = 0 && DSAP = NIL && SSAP = NIL && FC.Frame = rsp &&
FC.Function # SC
=
SDNM := FALSE
Disable_Recv.req
21 |AW_SD SRC_SEND_DATA.req (DA,SA,FC,DSAP,SSAP,DLSDU) RSND_SD2
/(DLSDU.Len # 0 || DSAP = NIL || SSAP = NIL) && FC.Frame = rsp
=
SET_DAE, SET_SAE, SDNM := FALSE , j:=(SAE+DAE)/0x80+3
Disable_Recv.req
22 |AW_SD SRC_SEND_DATA.req (DA,SA,FC,DSAP,SSAP,DLSDU) SND_SC
/FC.Frame = rsp && FC.Function = SC
=
SDNM := FALSE
Disable_Recv.req
23 |[AW_SD RX_DATA(data) AW_DA
/data = SD1
=
SD_count++, DLSDU.Len := 0, CHECKINI(data), i:=0

- 150 -

61158-4-3 © IEC:2007(E)

No.

Current
state

Event
Icondition
=action

Next state

24

AW_SD

RX_DATA(data)

/data = SD2

=

SD_count++, CHECKINI(data)

AW_LE

25

AW_SD

RX_DATA(data)
/data = SD3

=
SD_count++, DLSDU.Len := 8, CHECKINI(data)

AW_DA

26

AW_SD

RX_DATA(data)
/IPHSYN && data = SC

=
SD_count++, FC.Function := SC, FC.Frame := rsp, i:=0
SRC_RECEIVE_DATA.ind (DA,SA,FC,DSAP,SSAP,DLSDU), Disable_Recv.req

Idle

27

AW_SD

RX_DATA(data)
/PHSYN && data = SC

=
SD_count++, FC.Function := SC, FC.Frame := rsp, i:=0, TOK := FALSE

AW_CRCH1

28

AW_SD

RX_DATA(data)
/data = SD4

=

SD_count++

AW_DAT

29

AW_SD

RX_DATA(data)

/data # SC, SD1, SD2, SD3, SD4

=

SD_error_count++
SRC_RECEIVE_ERROR.ind, Disable_Recv.req

Idle

30

AW_SD

Recv_Error.ind

=

SD_error_count++
SRC_RECEIVE_ERROR.ind, Disable_Recv.req

Idle

31

AW_SD

Tslot_exp.ind

=
SRC_SLOT_EVENT.ind

AW_SD

32

AW_SD

Tsyn_exp.ind

/'"PHSYN

=
SRC_RECEIVE_ERROR:.ind,
Disable_Recv.req,
Enable_Recv.req

AW_SD

33

AW_SD

Tsyn_exp.ind
/PHSYN
=

AW_SD

34

AW_SD

Ph-DATA.ind(SOD,data)
=

AW_SD

35

AW_LE

RX_DATA(data)
/DLSDU.Len > 3 && DLSDU.Len < 250

=
DLSDU.Len := (data - 3), i:=0

AW_LER

36

AW_LE

RX_DATA(data)
/DLSDU.Len < 4 || DLSDU.Len > 249

=
SRC_RECEIVE_ERROR.ind, Disable_Recv.req

Idle

37

AW_LER

RX_DATA(data)
/data = DLSDU.Len + 3
=

AW_SDR

38

AW_LER

RX_DATA(data)
/data # (DLSDU.Len + 3)

=
SRC_RECEIVE_ERROR.ind, Disable_Recv.req

Idle

61158-4-3 © IEC:2007(E) - 151 -

No.

Current
state

Event
Icondition
=action

Next state

39

AW_SDR

RX_DATA(data)
/data = SD2
=

AW_DA

40

AW_SDR

RX_DATA(data)
/data # SD2

=
SRC_RECEIVE_ERROR:.ind, Disable_Recv.req

Idle

41

AW_DA

RX_DATA(data)

=
DA := data AND 0x7f, DAE := data AND 0x80, CHECKS(data), DSAP := NIL

AW_SA

42

AW_SA

RX_DATA(data)

=
SA := data AND 0x7f, SAE := data AND 0x80, CHECKS(data), SSAP := NIL

AW_FC

43

AW_FC

RX_DATA(data)
/DLSDU.Len > 0 && DAE # 0

=
CHECKS(data), SETUP_FC

AW_DSAP

44

AW_FC

RX_DATA(data)
/DLSDU.Len > 0 && DAE = 0 && SAE # 0

=
CHECKS(data), SETUP_FC

AW_SSAP

45

AW_FC

RX_DATA(data)
/DLSDU.Len > 0 && DAE = 0 && SAE = 0

=
CHECKS(data), SETUP_FC

AW_DATA

46

AW_FC

RX_DATA(data)
/IPHSYN && DLSDU.Len = 0 && DAE = 0 && SAE = 0

=
CHECKS(data), SETUP_FC

AW_FCS

47

AW_FC

RX_DATA(data)
/PHSYN && DLSDU.Len = 0 && DAE = 0 && SAE = 0

=
CHECKS(data), SETUP_FC

AW_CRCH1

48

AW_FC

RX_DATA(data)
/DLSDU.Len = 0 && (DAE # 0 || SAE # 0)

=
SRC_RECEIVE_ERROR.ind, Disable_Recv.req

Idle

49

AW_DSAP

RX_DATA(data)
/data && 0xc0

=
SRC_RECEIVE_ERROR.ind, Disable_Recv.req

Idle

50

AW_DSAP

RX_DATA(data)
/DLSDU.Len > 1 && SAE # 0

=
DSAP:=data, DLSDU.Len := DLSDU.Len -1, CHECKS(data)

AW_SSAP

51

AW_DSAP

RX_DATA(data)
/DLSDU.Len > 1 && SAE = 0

=
DSAP:=data, DLSDU.Len := DLSDU.Len -1, CHECKS(data)

AW_DATA

52

AW_DSAP

RX_DATA(data)
/IPHSYN && DLSDU.Len = 1 && SAE = 0

=
DSAP:=data, DLSDU.Len :

DLSDU.Len -1, CHECKS(data)

AW_FCS

53

AW_DSAP

RX_DATA(data)
/PHSYN && DLSDU.Len = 1 && SAE = 0

=
DSAP:=data, DLSDU.Len := DLSDU.Len -1, CHECKS(data)

AW_CRC1

- 152 - 61158-4-3 © IEC:2007(E)

No.

Current
state

Event
Icondition
=action

Next state

54

AW_DSAP

RX_DATA(data)
/DLSDU.Len = 1 && SAE # 0

=
SRC_RECEIVE_ERROR.ind, Disable_Recv.req

Idle

55

AW_SSAP

RX_DATA(data)
/data && 0xc0

=
SRC_RECEIVE_ERROR.ind, Disable_Recv.req

Idle

56

AW_SSAP

RX_DATA(data)
/DLSDU.Len > 1

=
SSAP:=data, DLSDU.Len := DLSDU.Len -1, CHECKS(data)

AW_DATA

57

AW_SSAP

RX_DATA(data)
/IPHSYN && DLSDU.Len = 1

=
SSAP:=data, DLSDU.Len := DLSDU.Len -1, CHECKS(data)

AW_FCS

58

AW_SSAP

RX_DATA(data)
/PHSYN && DLSDU.Len = 1

=

SSAP:=data, DLSDU.Len := DLSDU.Len -1, CHECKS(data)

AW_CRCH1

59

AW_DATA

RX_DATA(data)
/DLSDU.Len > i + 1

=

DLSDU.Data[i] := data, i := i + 1, CHECKS(data)

AW_DATA

60

AW_DATA

RX_DATA(data)
/IPHSYN && DLSDU.Len =i + 1

=
DLSDU.Data[i] := data, CHECKS(data)

AW_FCS

61

AW_DATA

RX_DATA(data)
/PHSYN && DLSDU.Len = i + 1

=

DLSDU.Data[i] := data, CHECKS(data), TOK := FALSE

AW_CRCH1

62

AW_FCS

RX_DATA(data)
/data = Fcs mod 256
=

AW_ED

63

AW_FCS

RX_DATA(data)
/data # (Fcs mod 256)

=
SRC_RECEIVE_ERROR:.ind, Disable_Recv.req

Idle

64

AW_ED

RX_DATA(data)
/data = ED && DA = Ox7f

=
SRC_RECEIVE_DATA.ind (DA,SA,FC,DSAP,SSAP,DLSDU), Start.req (Tsdr),
Disable_Recv.req

Idle

65

AW_ED

RX_DATA(data)
/data = ED && DA = 0x7f

=

SDNM := TRUE

SRC_RECEIVE_DATA.ind (DA,SA,FC,DSAP,SSAP,DLSDU), Start.req (Tsdr),
Disable_Recv.req

Idle

66

AW_ED

RX_DATA(data)
/data # ED

=
SRC_RECEIVE_ERROR:.ind, Disable_Recv.req

Idle

67

AW_CRC1

RX_DATA(data)
/data = C1
=

AW_CRC2

61158-4-3 © IEC:2007(E)

- 153 -

No.

Current
state

Event
Icondition
=action

Next state

68

AW_CRCH1

RX_DATA(data)
/data # C1

=
SRC_RECEIVE_ERROR.ind, Disable_Recv.req

AW_EODAF

69

AW_CRC2

RX_DATA(data)
/data = C2
=

AW_EODA

70

AW_CRC2

RX_DATA(data)
/data = C2

=
SRC_RECEIVE_ERROR.ind, Disable_Recv.req

AW_EODAF

71

AW_EODA

RX_DATA(data)
=
SRC_RECEIVE_ERROR:.ind, Disable_Recv.req

AW_EODAF

72

AW_EODA

Ph-DATA.ind(EODA ,data)

NNTOK && DA # Ox7f

=

SRC_RECEIVE_DATA.ind (DA,SA,FC,DSAP,SSAP,DLSDU), Start.req (Tsdr),
Startldle.req

AW_SD

73

AW_EODA

Ph-DATA.ind(EODA, data)
/TOK && DA # Ox7f

=
SRC_RECEIVE_TOKEN.ind (DA, SA), Startldle.req

AW_SD

74

AW_EODA

Ph-DATA.ind(EODA data)
/DA = 0xTf

=
SDNM := TRUE
SRC_RECEIVE_DATA.ind (DA,SA,FC,DSAP,SSAP,DLSDU),Startldle.req

AW_SD

75

AW_EODAF

Ph-DATA.ind(DATA data)
=

AW_EODAF

76

AW_EODAF

Ph-DATA.ind(EODA, data)

=
Startldle.req

AW_SD

77

AW_DAT

RX_DATA(data)
/(data && 0x80) = 0
=

AW_SAT

78

AW_DAT

RX_DATA(data)
/(data && 0x80) # 0

=
SRC_RECEIVE_ERROR.ind, Disable_Recv.req

Idle

79

AW_SAT

RX_DATA(data)
/IPHSYN && (data && 0x80) = 0

=
SRC_RECEIVE_TOKEN.ind (DA, SA), Disable_Recv.req

Idle

80

AW_SAT

RX_DATA(data)
/PHSYN && (data && 0x80) = 0

=
TOK := TRUE

AW_CRC1

81

AW_SAT

RX_DATA(data)
/(data && 0x80) # 0

=
SRC_RECEIVE_ERROR:.ind, Disable_Recv.req

Idle

82

SND_SD4

Tsyni_exp.ind

=
SRC_SYNI_EVENT.ind
Disable_Recv.req

Idle

83

SND_SD4

Tsyn_exp.ind
=

SND_SD4

— 154 —

61158-4-3 © IEC:2007(E)

No.

Current
state

Event
Icondition
=action

Next state

84

SND_SD4

Timer_exp.ind
=

SND_SD4

85

SND_SD4

Tid_exp.ind
/'PHSYN

=
data:=SD4
Enable_Recv.req, TX_DATA(data)

SND_DAT

86

SND_SD4

Tid_exp.ind
/PHSYN

=
CHECKINI(data)
Ph-DATA.req(SOA,data)

SND_SOAT

87

SND_SOAT

Ph-DATA.cnf

=

data := SD4
Ph-DATA.req(DATA,data)

SND_DAT

88

SND_DAT

TX_DATA_CNF

=
CHECKS(DA), data:=DA
TX_DATA(data)

SND_SAT

89

SND_SAT

TX_DATA_CNF
/IPHSYN

=
CHECKS(DA), data:=SA
TX_DATA(data)

SND_TOK

90

SND_SAT

TX_DATA_CNF
/PHSYN

=
CHECKS(DA), data:=SA
TX_DATA(data)

ST_SY_Cf1

91

SND_TOK

TX_DATA_CNF

/'"RxSD

=

Status := no_token_pass
SRC_SEND_TOKEN.cnf(Status)
Disable_Recv.req, Disable_Send.req
Start.req(Tqui)

AW_QUI

92

SND_TOK

TX_DATA_CNF

/RxSD && SDdata=SD4

=

Status := token_pass_failed
SRC_SEND_TOKEN.cnf(Status)
Disable_Recv.req, Disable_Send.req
Start.req(Tqui)

AW_QUI

93

SND_TOK

TX_DATA_CNF

/RxSD && SDdata=SD4

=

Status := token_pass_ok
SRC_SEND_TOKEN.cnf(Status)
Disable_Recv.req, Disable_Send.req
Start.req(Tqui)

AW_Qul

94

ST_SY_C1

Ph-DATA.cnf

=
data := Crc1
Ph-DATA.req(DATA,data)

ST_SY_C2

95

ST_SY_C2

Ph-DATA.cnf

=

data := Crc2
Ph-DATA.req(DATA,data)

ST_SY_EO

61158-4-3 © IEC:2007(E) - 155 —

No.

Current
state

Event
Icondition
=action

Next state

96

ST_SY_EO

Ph-DATA.cnf
=
Ph-DATA.req(EODA,data)

ST_SY_END

97

ST_SY_END

Ph-DATA.cnf

/PHSYN && 'RxSD

=

Status := no_token_pass
SRC_SEND_TOKEN.cnf(Status), Start.req(Tqui)

AW_Qul

98

ST_SY_END

Ph-DATA.cnf

/PHSYN && RxSD && SDdata=SD4

=

Status := token_pass_failed
SRC_SEND_TOKEN.cnf(Status), Start.req(Tqui)

AW_Qul

99

ST_SY_END

Ph-DATA.cnf

/PHSYN && RxSD && SDdata=SD4

=

Status := token_pass_ok
SRC_SEND_TOKEN.cnf(Status), Start.req(Tqui)

AW_Qul

100

ISND_SD1

Tsyni_exp.ind

=
SRC_SYNI_EVENT.ind
Disable_Recv.req

Idle

101

ISND_SD1

Tsyn_exp.ind
=

ISND_SD1

102

ISND_SD1

Timer_exp.ind
=

ISND_SD1

103

ISND_SD1

Tid_exp.ind

/SA # DA || FC.Function # 9
=

SType:=I

data:=SD1

CHECKINI(data)
TX_DATA(data)

SND_DAD

104

ISND_SD1

Tid_exp.ind
/'PHSYN && SA = DA && FC.Function = 9

=

SType:=R
data:=SD1
CHECKINI(data)
TX_DATA(data)

SND_DAD

105

ISND_SD1

Tid_exp.ind
/SA = DA || FC.Function # 9

=
SType:=I
CHECKINI(data)
Ph-DATA.req(SOA,data)

SND_SOAD

106

ISND_SD1

Tid_exp.ind

/SA = DA && FC.Function =9
=

SType:=R

CHECKINI(data)
Ph-DATA.req(SOA,data)

SND_SOAD

107

ISND_SD2

Tsyni_exp.ind

=
SRC_SYNI_EVENT.ind
Disable_Recv.req

Idle

108

ISND_SD2

Tsyn_exp.ind
=

ISND_SD2

109

ISND_SD2

Timer_exp.ind
=

ISND_SD2

- 156 —

61158-4-3 © IEC:2007(E)

No.

Current
state

Event
Icondition
=action

Next state

110

ISND_SD2

Tid_exp.ind
/N"PHSYN

=

SType:=I
data:=SD2
CHECKINI(data)
TX_DATA(data)

SND_LE

111

ISND_SD2

Tid_exp.ind
/PHSYN

=

SType:=I
CHECKINI(data)
Ph-DATA.req(SOA,data)

SND_SOAL

112

RSND_SD1

Tsyn_exp.ind
=

RSND_SD1

113

RSND_SD1

Timer_exp.ind
/'TPHSYN

=

SType:=R
data:=SD1
CHECKINI(data)
TX_DATA(data)

SND_DAD

114

RSND_SD1

Timer_exp.ind
/PHSYN

=
SType:=R
CHECKINI(data)
Ph-DATA.req(SOA,data)

SND_SOAD

115

RSND_SD2

Tsyn_exp.ind
=

RSND_SD2

116

RSND_SD2

Timer_exp.ind
/'TPHSYN

=
SType:=R
data:=SD2
CHECKINI(data)
TX_DATA(data)

SND_LE

117

RSND_SD2

Timer_exp.ind

/PHSYN

=

SType:=R
CHECKINI(data)
Ph-DATA.req(SOA,data)

SND_SOAL

118

SND_SC

Timer_exp.ind
/N"PHSYN

=

SType:=R,
data:=SC,
CHECKINI(data)
TX_DATA(data)

SND_ENDD

119

SND_SC

Timer_exp.ind
/PHSYN

=

SType:=R,
CHECKINI(data)
Ph-DATA.req(SOA,data)

SND_SOAS

120

SND_SOAL

Ph-DATA.cnf

=
data := SD2
Ph-DATA.req(DATA,data)

SND_LE

61158-4-3 © IEC:2007(E) - 157 -

No.

Current
state

Event
Icondition
=action

Next state

121

SND_LE

TX_DATA_CNF
=

data := DLSDU.Len + j, CHECKSYN(data)
TX_DATA(data)

SND_LER

122

SND_LER

TX_DATA_CNF

=
CHECKSYN(data)
TX_DATA(data)

SND_SD2R

123

SND_SD2R

TX_DATA_CNF

=
data := SD2, CHECKSYN(SD2)
TX_DATA(data)

SND_DAD

124

SND_SOAD

Ph-DATA.cnf

=

data := SD1
Ph-DATA.req(DATA,data)

SND_DAD

125

SND_DAD

TX_DATA_CNF

=
data := DA + DAE, CHECKS(data)
TX_DATA(data)

SND_SAD

126

SND_SAD

TX_DATA_CNF

=
data := SA + SAE, CHECKS(data)
TX_DATA(data)

SND_FC

127

SND_FC

TX_DATA_CNF
IDAE # 0

=
SET_F, data:= F, CHECKS(data)
TX_DATA(data)

SND_DSAP

128

SND_FC

TX_DATA_CNF
/DAE = 0 && SAE # 0

=
SET_F, data:= F, CHECKS(data)
TX_DATA(data)

SND_SSAP

129

SND_FC

TX_DATA_CNF
/DLSDU.Len > 0 && DAE = 0 && SAE = 0

=
SET_F, data:= F, CHECKS(data)
TX_DATA(data)

SND_DATA

130

SND_FC

TX_DATA_CNF
/DLSDU.Len = 0 && DAE = 0 && SAE = 0

=
SET_F, data:= F, CHECKS(data)
TX_DATA(data)

SND_FCS

131

SND_DSAP

TX_DATA_CNF
ISAE # 0

=
data := DSAP, CHECKS(data)
TX_DATA(data)

SND_SSAP

132

SND_DSAP

TX_DATA_CNF
/DLSDU.Len>0 && SAE = 0

=
data := DSAP, CHECKS(data)
TX_DATA(data)

SND_DATA

133

SND_DSAP

TX_DATA_CNF
/DLSDU.Len = 0 && SAE = 0

=
data := DSAP, CHECKS(data)
TX_DATA(data)

SND_FCS

- 158 —

61158-4-3 © IEC:2007(E)

No.

Current
state

Event
Icondition
=action

Next state

134

SND_SSAP

TX_DATA_CNF
/DLSDU.Len > 0

=

data := SSAP, CHECKS(data)
TX_DATA(data)

SND_DATA

135

SND_SSAP

TX_DATA_CNF
/DLSDU.Len = 0

=

data := SSAP, CHECKS(data)
TX_DATA(data)

SND_FCS

136

SND_DATA

TX_DATA_CNF

/DLSDU.Len > i

=
data:=DLSDU.Data[i], i := i + 1, CHECKS(data)
TX_DATA(data)

SND_DATA

137

SND_DATA

TX_DATA_CNF
/IPHSYN &8& DLSDU.Len = i

=

data:=DLSDU.Datali], CHECKS(data)
TX_DATA(data)

SND_FCS

138

SND_DATA

TX_DATA_CNF

/PHSYN && DLSDU.Len =i

=

data:=DLSDU.Data[i], CHECKS(data)
Ph-DATA.req(DATA,data)

SND_SY_C1

139

SND_FCS

TX_DATA_CNF

=
data := (Fcs mod 256)
TX_DATA(data)

SND_ED

140

SND_ED

TX_DATA_CNF
=

data := ED
TX_DATA(data)

SND_ENDD

141

SND_ENDD

TX_DATA_CNF
=
SRC_SEND_DATA.cnf, Disable_Send.req, Start.req(Tqui)

AW_QUI

142

SND_SOAS

Ph-DATA.cnf

=
data := SC
Ph-DATA.req(DATA,data)

SD_SY_C1

143

SD_SY_C1

Ph-DATA.cnf

=

data := Crc1
Ph-DATA.req(DATA,data)

SD_SY_C2

144

SD_SY_C2

Ph-DATA.cnf

=
data := Crc2
Ph-DATA.req(DATA,data)

SD_SY_EO

145

SD_SY_EO

Ph-DATA.cnf

=
Ph-DATA.req(EOA,data)

SD_SY_END

146

SD_SY_END

Ph-DATA.cnf
=
SRC_SEND_DATA.cnf, Start.req(Tqui)

AW_QUI

147

AW_QuUI

Timer_exp.ind
/PHSYN

=
Startldle.req

AW_SD

61158-4-3 © IEC:2007(E) - 159 —

Event
Icondition Next state
=action

Current

No. state

148 |AW_QUI Timer_exp.ind AW_SD
/'PHSYN && SType=| && !SDNM
=

Enable_Recv.req

149 |AW_QUI Timer_exp.ind idle
/'PHSYN && SType=R || SDNM
=

150 S-State RX_DATA S-State
/'RxSD

=
SDdata := data, RxSD :=TRUE

151 |S-State RX_DATA S-State
/RxSD
=

152 |S-State Ph-DATA.ind(EOA,Data) S-State
=

153 |S-State Ph-DATA.ind(EOAD,Data) S-State
=

154 |AW-State Recv_Error.ind Idle

=
SRC_RECEIVE_ERROR:.ind, Disable_Recv.req

155 |AW-State Tsyn_exp.ind AW_SD
=
SRC_RECEIVE_ERROR:.ind,
Disable_Recv.req,
Enable_Recv.req

156 [AW-State Ph-DATA.ind(EOA,Data) AW_SD
=
SRC_RECEIVE_ERROR.ind, Startldle.req

A.6.8 Functions

All function of the SRC are shown in Table A.25.

- 160 — 61158-4-3 © IEC:2007(E)

Table A.25 — SRC functions

Function Description

PHSYN Data_rate = 31,25 kbit/s

CHECKINI(data) |if (PHSYN) then (Init CRC(C1,C2)) else (Fcs := 0)

CHECKS(data) |if (PHSYN) then (Update CRC(C1,C2)) else (Fcs := 0)

CHECKSYN(data) |Update CRC(C1,C2)

RX_DATA(data) if (PHSYN) then (Ph-DATA.ind(DATA,data)) else (Recv_Char.ind(data))

TX_DATA(data) if (PHSYN) then (Ph-DATA.req(DATA,data)) else (Send_Char.req(data))

TX_DATA_CNF |if (PHSYN) then (Ph-DATA.cnf) else (Send_Char.cnf)

SET_SDNM (if (FC.Function = SDN_L, SDN_H,TE,CV) SDNM = TRUE
else SDNM = FALSE)

SETUP_FC (
FC.Function = Char AND 0xOf,
if (Char AND 0x40) (FC.FCB = Char AND 0x20,
FC.FCV = Char AND 0x10,
FC.Frame_type =req)
else (FC.Stn-Type= Char AND 0x30,
FC.Frame_type =rsp)
)

SET_F (

F = FC.Function,

if (FC.Frame_type =req) (0x80 + FC.FCB * 0x20 + FC.FCV * 0x10)
else (F=F + FC.Stn-Type* 0x30)

)

61158-4-3 © IEC:2007(E) - 161 -

Annex B
(informative)

Type 3 (synchronous): exemplary FCS implementations

This annex provides an example implementation of FCS generation and FCS syndrome
checking for Type 3 when used with a synchronous PhL.

Transmit Underrun

Data / FCS select

DLPDU data

Preset
I TxD
S TS TS S TS
B O O O O EO EO RO LO L O L i
TxC —D ..‘> .-‘> b N .l‘,) .l‘,
%0 x1 %2 x3 x4 x° %6 %7 x8 x 9 x 10 x11 x 12x13 414415

Figure B.1 — Example of FCS generation for Type 3 (synchronous)

In this example, shown in Figure B.1, the FCS is computed in a register consisting of 16
presettable master-slave flip-flops which are interconnected as a linear feedback shift
register, with its least significant bit depicted on the left. The initial preset of the register
before transmission serves to include the initial L(X) term in the FCS computation. Feedback
is disabled during transmission of the FCS itself, and the FCS is transmitted complemented to
provide the final L(X) inclusion in the FCS computation. Also shown is optional logic to inhibit
the final complementation and transmit a massively incorrect FCS in the case of a transmitter
underrun.

Preset RxD |

-9
—¢

T |
ERAIERARAE
D QLD QDQLD a—

Figure B.2 — Example of FCS syndrome checking on reception
for Type 3 (synchronous)

In this example, shown in Figure B.2, the residual FCS is computed in a similar register. The
Q outputs of the 16 flip-flops are compared to the expected residual value by the 16-input
“and” gate, half of whose inputs are complemented.

- 162 - 61158-4-3 © IEC:2007(E)

In this example, the FCS is computed in a register consisting of 16 presettable master-slave
flip-flops which are interconnected as a linear feedback shift register, with its least significant
bit depicted on the left. The initial pre-set of the register before transmission serves to include
the initial L(X) term in the FCS computation. Feedback is disabled during transmission of the
FCS it self, and the FCS is transmitted complemented to provide the final L(X) inclusion in the
FCS computation. Also shown is optional logic to inhibit the final complementation and
transmit a massively incorrect FCS in the case of a transmitter underrun.

61158-4-3 © IEC:2007(E) - 163 -

Annex C
(informative)

Type 3: Exemplary token procedure
and message transfer periods

C.1 Procedure of token passing

For explanatory purposes, the description of the token rotation time in 5.3.2.6 and message
priorities in 5.3.2.7 are amended. The timers are presented as functions of the time t.

The token rotation time is measured by using the token-rotation-timer. At the beginning (tj-1 in
Figure C.1) the token-rotation-timer is loaded with the target rotation time TTR and decrement
each bit time.

After receiving a token, the DL-entity may carry out high priority and low priority message
transfer periods, according to the following rules.

— On reception of the token (tj) the TRR (real rotation time for the last token cycle) is derived
from the token-rotation-timer by reading its current value that represents TTH and
calculating TRR(i) = TTR - TTH. The timer is loaded with the value TTR and restarted.

— One high priority message transfer period is always possible at this moment (just after
token reception).

— A further high priority or low priority message transfer period or generally a low priority
message transfer period may only be carried out if time to hold the token is still available
at the instant of execution, that means that the actual value of TRR of the last, just ending

token cycle (from the viewpoint of this station) is less than the current value of the token-
rotation-timer.

In order to avoid unnecessary timers in an implementation, the increase of TRR during token
usage is measured indirectly by use of the token-rotation-timer, which is measuring the token
hold time of the just started actual token cycle. As known from the timer concepts of
IEC 61131-3-3, one timer can be used for measurement of parallel but shifted times and
therefore the availability of the token holding time is derived from the token-rotation-timer.
Thus, a message transfer period can be executed, if at the instant of execution, the read
value of the token-rotation-timer is greater than TRR, as shown in Figure C.1.

Figure C.1 shows the relationship of TTR, TRR, TTH-

- 164 — 61158-4-3 © IEC:2007(E)

Value of the
token rotation time 4
Trr(t) and token hold
time Ty4(t)

Tr S U <« L

Tre (i+1)

t, t t Time

Value of the token-rotation-timer
Increase of Tgg during token usage

t.y, t, .y Times of token receipt for station n

Figure C.1 — Derivation of the token holding time (TTH)

C.2 Examples for token passing procedure

The consumption of available token holding time depends of the actual working load. In the
following examples the different working load situations are demonstrated together with the
usage of the token holding time.

The figures illustrate the behavior of the token passing in cases of varying load. The used
time scale only demonstrates the relationship without any relation to real-time. Below are
listed some enumerated cases to explain the Token Passing procedure.

Case one: A startup situation is depicted in Figure C.2. The token is passed by the token
holder without usage of the available token holding time (TTH). During the start up phase no
messages are sent. As depicted in Figure C.2, the timer value of each token holder is always

greater than zero in case of token receipt, for example, the read value from token-rotation-
timer is greater than zero. Thus TTH is still available.

61158-4-3 © IEC:2007(E) - 165 —

Timer value

A
Master 3

TTR

token-
rotation-
timer 3

v

Master 2

TTR

token-
rotation-
timer 2

Master 1

token- ~~
rotation-

timer 1

v

a Try > 0, no message transfer, token passed from Master 1 to Master 2
b T1y > 0, no message transfer, token passed from Master 2 to Master 3
c Try > 0, no message transfer, token passed from Master 3 to Master 1

Figure C.2 — No usage of token holding time (TTH)

Case two: The bus transfer time is shared fairly between all token holders (see Figure C.3).
Each token holder only uses a part of the token holding time (TTH). The actual token holder

only sends one message in each token cycle. After that it passes the token to the next token
holder. The TTH used by a token holder has a constant (for that token holder) value (see

Figure C.3: a, b, c).

As depicted in Figure C.3 some TTH time is still available in each station at the time of token
receipt because the read value of the token-rotation-timer is greater than zero at that instant.

- 166 — 61158-4-3 © IEC:2007(E)

Timer value
A Master 3

Trr
token-

rotation-

timer 3 L

Master 2

1
0
i
/
0
Y

A

T
token-
rotation-
timer 2

A Master 1

Tre |

token-
rotation-
timer 1

= 4 el SR
L

a Toy > 0, message transfer by Master 1, token passed from Master 1 to Master 2
b Toy > 0, message transfer by Master 2, token passed from Master 2 to Master 3
c Toy > 0, message transfer by Master 3, token passed from Master 3 to Master 1

Figure C.3 — Usage of token holding time (TTH) for message transfer
(equivalence between TTH of each Master station)

Case three: This case is characterized by a load change, from no load to a maximum load,
that is a worst-case situation. This means that each token holder has a maximum amount of
messages to send after a period of no message requests. That leads to the fact that each
token holder tries to use the whole available token holding time for that token rotation. The
Token Passing procedure guarantees a fair access to the medium for all token holders even
in this situation.

In case of using the whole available bus transfer time (TTR) by one token holder within one
token cycle, no local TTH time is available on token arrival in any of the other token holders

for that cycle, so they are only allowed to send one high priority message. Within the next
token cycle the token holder that had used the whole Ttg previously is limited to one high
priority message, after which it immediately passes the token. This situation is depicted in
Figure C.4. After a start up phase in which the token is passed by the token holders, Master
station 1 uses the whole available bus transfer time to send messages (see Figure C.4: d). In
this case Master station 2 and Master station 3 have no TTH, indicated by a read value of
zero of the token-rotation-timer at token receipt. Because Master station 3 has to transfer a
high priority message it sends this message after receiving the token (see Figure C.4: f).

In the next token cycle (g), Master station 1 passes the token immediately after token receipt
as its read timer value has reached zero and it has no high priority messages waiting. Now
Master station 2 has the possibility to use the whole bus transfer time for message transfer
within this token cycle (h). Master station 2 also uses all the available TTH time because of its

high working load, after which it is forced to pass the token to Master station 3.

61158-4-3 © IEC:2007(E) - 167 -

Master station 3 is now limited by its local TTH that has reached zero, and as it has no high

priority messages, it passes the token immediately after receipt (see Figure C.4: i). In the
following token cycle no TTH is available for Master station 1 or Master station 2. They could
send one high priority message, but in this example they pass the token immediately without
message transfer (see Figure C.4: j and k). At this point in the cycle the read value of the
token-rotation-timer in Master station 3 is greater than zero, so this token holder can use the
available TTH time for message transfer (see Figure C.4: |).

2007(E)

61158-4-3 © IEC

- 168 —

€ Jajse|y 0} Z Jajse|y woly pessed uaxo) Jajsuel} abessaw ou ‘Z Jejsely Joj 0 =) u Z Jeyse 0} | Jejsepy wouy passed uexo) ‘Jejsuel) abessaw ou ‘| ssjsepy 4o 0 = Ly 6
Z Jeise|y 0} | Jejse|y Wwoy pessed usyo) Jajsuel} ebessaw ou ‘| Jejsely 1o} 0 = L) w | Jelse}y 0} ¢ Jajse|y Wwoly pessed uayo) jues ebessaw toud ybly | ‘¢ Jejsepy Joy o =M1)
| Jelse| 0} ¢ Jejse|y woy passed UsNo)} ‘¢ JeiseIN Aq Jejsuel; ebessaw ‘g Jejsely 10j 0 < L) | € Jejse 0} Z Jejse}y wouy passed usyo} ‘Jejsuel) abessaw ou ‘Z Jsjsejy 1oy 0 = L) °
€ JojSep 0} Z Jajse|y woly pessed usyo) Jajsuely abessow ou ‘Z seysely 10j 0 =" b Z Jejsepy 0} | Jajse|y wouy pessed usyo) ‘| JaJSely Aq Jajsuesy abessew ‘| sajsely 10j 0 <L p
Z Jeisepy 0} | Jajsely woly pessed uao) Jajsuel} abessaw ou ‘| Jejsely Joj 0 = L) r (dn peys) | Jejsepy 0} € Jajsely wouy passed usxo) “Jajsuel} abessew ou ‘g Jejsey 10j 0 < L)
| Jejsep 0} € Jajse|y wouy possed usxo) Jajsuel} abessow ou ‘g Jejsely Joj 0 = L) | (dn peys) € Jejsepy 0} Z Jajsely wouy passed usxo) “Jajsuel} abessew ou ‘z sejsey 10} 0 < L q
¢ JejSe| 0} Z JBjse|\ Woy pessed Usyo) ‘Z Jeisel\ Aq Jejsuel) ebessew ‘Z Jejsely 10j 0 < L) y (dn pels) Z Jeysepy 0} | Jsjsely oy passed uao) ‘Jajsuel} abessauw ou ‘| Jejsey 104 0 < L e
\ 1 ! H [! \ [P | 1 : | 1 :
! pwo I T T A u i i yoobe p > ta e
| 1 i ' ! H 1 | | ! | i H i i
| 1 | 1 H | | | | ' | 1 '
| H i | H 1 ! | | ! !
—t + + - + t - — T ——
1 1 1 1 1
: i o : ’ ! ! | sowy
“ " " " “ “ “ " 1 “ " -uonejol
| ! 1 ! | ! I ! " 1 ! -uao}
Lo Lo _ ! P o
1
I 1 “ | " I 1 ")
! | ! 1 ! 1
T T T T + T
1 1 1 1 1
| i \ | i | sorsep | ! \ ! |
\ 1 H 1 h I | | | 1
| I H I | 1 | 1 | 1
| I H I | 1 | | | 1
\ 1 | 1 | 1 H 1 H
1 1 1 1 1 1 1 1 1 1
] 1 1 1] 1 1 1 1 1
_. + L ! 4 i " + n + n :
i i I \ | 1 guewy
i i : 1 1 H -uonejol
i i i ; | i el
1 1 1
| | | 1 H Ly
1
1 1 Z Joisey 1 1
1 1 1 1
1] 1 1
1] 1 1
1 I 1 '
1] 1 1
1 1 1 1
-+ . . \ I
* + + t T
1 € Jawn
:::::::: " -uopeyjol
-~ -usso}
N
€ Jojsepy
anjen Jawi

Figure C.4 — Usage of token holding time (TTH) in different working load situations

61158-4-3 © IEC:2007(E) - 169 -

C.3 Examples for message transfer periods — asynchronous transmission

The following examples give a detailed overview about the possible message transfer periods
for asynchronous transmission according to typical messages used by the DLS-user:

Symbols used in the following examples:

Tsc bit time to transmit a single character SC; (11 bits)
TSAP bit time to transmit D_SAP_index and S_SAP_index; (22 bits)
TsD1 bit time to transmit a DLPDU with start delimiter SD1; (66 bits)
TsD2 bit time to transmit a DLPDU with start delimiter SD2 (without DLSDU and Address-Extensions);
(99 bits)
TsD3 :)1|t52nt])et t;) transmit a DLPDU with start delimiter SD3, DLPDU format of fix length with data field;
its

Req-PDU number of octets in the DATA_UNIT
Res-PDU number of octets in the DATA_UNIT

EXAMPLES
a) GAP request with reply (TGAP1)

TGAP1=TID1 +TSDR +2xTsp1 +2XTTD (C.1)
b) GAP request with no reply (TGAP2)

TGAP2 =TID1 + TsD1 + TSL (C.2)

c) Cyclic message transfer (TCy)

TcYy1=TID1 +TSDR+2xTsp2 +2x TTp + 11 x (Req-PDU + Res-PDU) (C.3)
Tcy2=TID1 +TsDR+Tsp2 + Tsc +2x T1p + 11 x Req-PDU (C.4)
Tcy3=TID1 + Tsp2 + TsL + 11 x Reg-PDU (C.5)

d) Acyclic message transfer with response (TACR)
TACR1=TID1+*TSDR+2xTsp2+2xTTp +2x Tsap + 11 x Res-PDU (C.6)
TACR2=TID1 +* TSDR + TSD2 + TSD3 + 2 x TTD + TSAP (C.7)

e) Acyclic message transfer with acknowledgement (TACY)

TAacYy1 =TID1 + TSDR * TsD2 + TSAP + Tsc + 2x TTD + 11 x Req-PDU (C.8)
TacY2=TID1 +*+TSDR + Tsp2 + TSAP + TspD1 + 2 x TTp + 11 x Reqg-PDU (C.9)

f) Broadcast message transfer (TBC)

TBCc =TID2 + Tsp2 + Tsap + TTD + 11 x Req-PDU (C.10)

-170 - 61158-4-3 © IEC:2007(E)

C.4 Examples for message transfer periods — synchronous transmission

The following examples give a detailed overview about the possible message transfer periods
for synchronous transmission according to typical messages used by the DLS-user:

Symbols used in the following examples:

Tsc bit time to transmit a single character SC including CRC; (24 bits)

TSAP bit time to transmit D_SAP_index and S_SAP_index; (16 bits)

TsD1 bit time to transmit a DLPDU with start delimiter SD1; (48 bits)

TsD2 bit time to transmit a DLPDU with start delimiter SD2 (without DLSDU and Address-Extensions);
(72 bits)

TsD3 bit time to transmit a DLPDU with start delimiter SD3, DLPDU format of fix length with data field;
(112 bits)

TphL bit time to transmit preamble, physical start delimiter and end delimiters as well as post-

transmission gap time; unit in bit (40 bits: 16 bits preamble, 8 bits start delimiter and 8 bits end

delimiter, 8 bits post-transmission gap time)
Req-PDU number of octets in the DATA_UNIT
Res-PDU number of octets in the DATA_UNIT

EXAMPLES
a) GAP request with reply (TGAP1)

TGAP1=2xTphL + TSDR +2x TgD1 +2x TTD (C.11)
b) GAP request with no reply (TGAP2)

TGAP2 = TPhL + TSD1 *+ TSL (C.12)
c) Cyclic message transfer (TCy)

TcYy1=2xTphL + TSDR +2xTsp2 +2x TTD + 8 x (Req-PDU + Res-PDU) (C.13)

Tcy2=2xTphL + TSDR+TSpD2 + Tsc + 2 x TTp + 8 x Req-PDU (C.14)

Tcy3 =TphL + Tsp2 + TsL + 8 x Reg-PDU (C.15)
d) Acyclic message transfer with response (TACR)

TACR1=2XxTPhL + TSDR +2xTgp2+2x TTD + 2 x TSAP + 8 x Res-PDU (C.16)

TACR2=2xTphL + TSDR * TSD2 + TSD3 + 2 X TTD + TSAP (C.17)
e) Acyclic message transfer with acknowledgement (TACY)

TACY1 =2xTphL + TSDR * TSD2 + TSAP + TSC + 2x TTD + 8 X Req-PDU (C.18)

TACY2=2XTphL + TSDR + TSD2 + TSAP + TsD1 +2x TTp + 8 x Reg-PDU (C.19)
f) Broadcast message transfer (TBC)

TBC =TphL + Tsp2 + Tsap + TTD + 8 x Reqg-PDU (C.20)

61158-4-3 © IEC:2007(E) -171 -

Bibliography

IEC 60870-5-1, Telecontrol equipment and systems — Part 5: Transmission protocols —
Section One: Transmission frame formats

IEC/TR 61158-1 (Ed.2.0), Industrial communication networks — Fieldbus specifications — Part
1: Overview and guidance for the IEC 61158 and IEC 61784 series

IEC 61158-5-3, Digital data communications for measurement and control — Fieldbus for use
in industrial control systems — Part 5-3: Application layer service definition — Type 3 elements

IEC 61158-6-3, Digital data communications for measurement and control — Fieldbus for use
in industrial control systems — Part 6-3: Application layer protocol specification — Type 3
elements

IEC 61784-1 (Ed.2.0), Industrial communication networks — Profiles — Part 1: Fieldbus profiles

IEC 61784-2, Industrial communication networks — Profiles — Part 2: Additional fieldbus
profiles for real-time networks based on ISO/IEC 8802-3

ISO/IEC 3309, Information technology — Telecommunications and information exchange
between systems — High-level data link control (HDLC) procedures — Frame structure.

ISO/IEC 8802 (all parts), Information technology — Telecommunications and information
exchange between systems — Local and Metropolitan area networks

ISO/IEC TR 8802-1, Specific requirements — Part 1: Overview of Local Area Network
Standards
ISO/IEC 8802-2, Specific requirements — Part 2: Logical link control

ISO/IEC 8802-3, Specific requirements — Part 3: Carrier sense multiple access with
collision detection (CSMA/CD) access method and physical layer specifications

ISO/IEC 8802-5, Specific requirements — Part 5: Token ring access method and physical
layer specifications

ISO/IEC 8802-4:1990, Information processing systems — Local area networks — Part 4:
Token-passing bus access method and physical layer specifications

ISO/IEC 9314-2, Information processing systems — Fibre Distributed Data Interface (FDDI) —
Part 2: Token Ring Media Access Control (MAC)

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

3, rue de Varembé
P.O. Box 131
CH-1211 Geneva 20
Switzerland

Tel: +41 2291902 11
Fax: + 41 22 919 03 00
info@iec.ch
www.iec.ch

