

Edition 2.0 2007-02

INTERNATIONAL STANDARD

NORME INTERNATIONALE

equipment – Radiated disturbances

INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE COMITÉ INTERNATIONAL SPÉCIAL DES PERTURBATIONS RADIOÉLECTRIQUES

Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-4: Radio disturbance and immunity measuring apparatus – Ancillary

Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Partie 1-4: Appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Matériels auxiliaires – Perturbations rayonnées

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

PRICE CODE CODE PRIX

ICS 33.100.10; 33.100.20

ISBN 2-8318-9001-2

CONTENTS

FO	REW	DRD	9
1	Scop	e	13
2	Norn	native references	
3	Term	is and definitions	
4	Ante	nnas for measurement of radiated radio disturbance	
-	4 1	Accuracy of field-strength measurements	17
	4.2	Frequency range 9 kHz to 150 kHz	17
	4.3	Frequency range 150 kHz to 30 MHz.	
	4.4	Frequency range 30 MHz to 300 MHz	
	4.5	Frequency range 300 MHz to 1 000 MHz	
	4.6	Frequency range 1 GHz to 18 GHz.	
	4.7	Special antenna arrangements	31
5	Test sites for measurement of radio disturbance field strength for the frequency range of 30 MHz to 1 000 MHz.		
	5.1	Open area test site	33
	5.2	Weather protection enclosure	
	5.3	Obstruction-free area	33
	5.4	Ambient radio frequency environment of a test site	35
	5.5	Ground plane	
	5.6	Open area site validation procedure	
	5.7	Test site suitability with ground-plane	47
	5.8	Test site suitability without ground-plane	57
	5.9	Evaluation of set-up table and antenna tower	75
6	Reve	rberating chamber for total radiated power measurement	79
	6.1	Chamber	79
7	ТЕМ	cells for immunity to radiated disturbance measurement	85
8	Test sites for measurement of radio disturbance field strength for the frequency range 1 GHz to 18 GHz		85
	8.1	Reference test site	
	8.2	Validation of the test site	
	8.3	Alternative test site	113
	_		
Anı	nex A	(normative) Parameters of broadband antennas	115
Anr cha	nex B (aracte	normative) Monopole (1 m rod antenna) performance equations and rization of the associated antenna matching network	123
Anı me	nex C asure	(normative) Loop antenna system for magnetic field induced current ments in the frequency range of 9 kHz to 30 MHz	133
Anı ran	nex D ae of	(informative) Construction details for open area test sites in the frequency 30 MHz to 1 000 MHz (Clause 5)	151
Anı	nex E	(normative) Validation procedure of the open area test site for the frequency	
ran	ge of	30 MHz to 1 000 MHz (Clause 5)	159
Anı	nex F	(informative) Basis for 4 dB site acceptability criterion (Clause 5)	175
Bib	liogra	phy	179

Figure 1 – Short dipole antenna factors for $R_{\rm L}$ = 50 Ω	.23
Figure 2 – Obstruction-free area of a test site with a turntable (see 5.3)	. 37
Figure 3 – Obstruction-free area with stationary EUT (see 5.3)	.37
Figure 4 – Configuration of equipment for measuring site attenuation in horizontal polarization (see 5.6 and Annex E)	.41
Figure 5 – Configuration of equipment for measuring site attenuation in vertical polarization using tuned dipoles (see 5.6 and Annex E)	.41
Figure 6a – Typical antenna positions for alternative test site – Vertical polarization NSA measurements	.51
Figure 6b – Typical antenna positions for alternative test site – Horizontal polarization NSA measurements	.51
Figure 6c – Typical antenna positions for alternative test site – Vertical polarization <i>NSA</i> measurements for an EUT that does not exceed a volume of 1 m depth, 1,5 m width, 1,5 m height, with the periphery greater than 1 m from the closest material that may cause undesirable reflections	.53
Figure 6d – Typical antenna positions for alternative test site – Horizontal polarization <i>NSA</i> measurements for an EUT that does not exceed a volume of 1 m depth, 1,5 m width and 1,5 m height, with the periphery greater than 1 m from the closest material that may cause undesirable reflections	.53
Figure 6 – Typical antenna positions for alternative test sites	. 53
Figure 7 – Graph of theoretical free-space <i>NSA</i> as a function of the frequency for different measurement distances (see Equation 4)	. 59
Figure 8 – Measurement positions for the site validation procedure	.65
Figure 9 – Example of one measurement position and antenna tilt for the site validation procedure	.67
Figure 10 – Typical free-space site reference measurement set-up	.73
Figure 11 – Position of the antenna relative to the edge above a rectangle set-up table (top view)	.79
Figure 12 – Antenna position above the set-up table (side view)	.79
Figure 13 – Example of a typical paddle stirrer	.81
Figure 14 – Range of coupling attenuation as a function of frequency for a chamber using the stirrer in Figure 13	.83
Figure 15 – Transmit antenna E-Plane radiation pattern example (for informative purposes only)	.91
Figure 16 – Transmit antenna H-plane radiation pattern (for informative purposes only)	. 93
Figure 17 – S_{VSWR} measurement positions in a horizontal plane – see 8.2.2.2.1 for description	.95
Figure 18 – S _{VSWR} positions (height requirements)	. 99
Figure 19 – Conditional test position requirements	111
Figure B.1 – Method using network analyser	127
Figure B.2 – Method using radio-noise meter and signal generator	127
Figure B.3 – Example of mounting capacitor in dummy antenna	129
Figure C.1 – The loop-antenna system, consisting of three mutually perpendicular large- loop antennas	135
Figure C.2 – A large-loop antenna containing two opposite slits, positioned symmetrically with respect to the current probe C	137

Figure C.3 – Construction of the antenna slit	139
Figure C.4 – Example of antenna-slit construction using a strap of printed circuit board to obtain a rigid construction	139
Figure C.5 – Construction for the metal box containing the current probe	141
Figure C.6 – Example showing the routing of several cables from an EUT to ensure that there is no capacitive coupling from the leads to the loop	141
Figure C.7 – The eight positions of the balun-dipole during validation of the large-loop antenna	143
Figure C.8 – Validation factor for a large loop-antenna of 2 m diameter	143
Figure C.9 – Construction of the balun-dipole	145
Figure C.10 – Conversion factors C_{dA} (for conversion into dB (μ A/m)) and C_{dV} (for conversion into dB (μ V/m)) for two standardized measuring distances <i>d</i>	147
Figure C.11 – Sensitivity S _D of a large-loop antenna with diameter <i>D</i> relative to a large-loop antenna having a diameter of 2 m	147
Figure D.1 – The Rayleigh criterion for roughness in the ground plane	153
Table 1 – Normalized site attenuation (recommended geometries for tuned half-wave dipoles with horizontal polarization)	55
Table 2 – Normalized site attenuation* (recommended geometries for broadband antennas)	
Table 3 – Maximum dimensions of test volume versus test distance	63
Table 4 – Frequency ranges and step sizes	69
Table 5 – S _{VSWR} test positions	101
Table 6 – S _{VSWR} reporting requirements	113
Table E.1 – Normalized site attenuation* (Recommended geometries for broadband antennas)	167
Table E.2 – Normalized site attenuation (Recommended geometries for tuned half-wave dipoles, horizontal polarization)	169
Table E.3 – Normalized site attenuation (Recommended geometries for tuned half-wave dipoles – vertical polarization)	171
Table E.4 – Mutual coupling correction factors for geometry using resonant tunable dipoles spaced 3 m apart	173
Table F.1 – Error budget	175

INTERNATIONAL ELECTROTECHNICAL COMMISSION INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

SPECIFICATION FOR RADIO DISTURBANCE AND IMMUNITY MEASURING APPARATUS AND METHODS –

Part 1-4: Radio disturbance and immunity measuring apparatus – Ancillary equipment – Radiated disturbances

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard CISPR 16-1-4 has been prepared by CISPR subcommittee A: Radio interference measurements and statistical methods.

This second edition of CISPR 16-1-4 cancels and replaces the first edition published in 2003, amendment 1 (2004) and amendment 2 (2005).

The document CISPR/A/710/FDIS, circulated to the National Committees as amendment 3, led to the publication of the new edition.

The text of this standard is based on the first edition, its Amendment 1, Amendment 2 and the following documents:

FDIS	Report on voting
CISPR/A/710/FDIS	CISPR/A/722/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of CISPR 16 series, under the general title *Specification for radio disturbance and immunity measuring apparatus and methods*, can be found on the IEC website.

CISPR 16-1 consists of the following parts, under the general title *Specification for radio disturbance and immunity measuring apparatus and methods* – *Radio disturbance and immunity measuring apparatus:*

- Part 1-1: Measuring apparatus
- Part 1-2: Ancillary equipment Conducted disturbances
- Part 1-3: Ancillary equipment Disturbance power
- Part 1-4: Ancillary equipment Radiated disturbances
- Part 1-5: Antenna calibration test sites for 30 MHz to 1 000 MHz

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

SPECIFICATION FOR RADIO DISTURBANCE AND IMMUNITY MEASURING APPARATUS AND METHODS –

Part 1-4: Radio disturbance and immunity measuring apparatus – Ancillary equipment – Radiated disturbances

1 Scope

This part of CISPR 16 is designated a basic standard, which specifies the characteristics and performance of equipment for the measurement of radiated disturbances in the frequency range 9 kHz to 18 GHz.

Specifications for ancillary apparatus are included for: antennas and test sites, TEM cells, and reverberating chambers.

The requirements of this publication must be complied with at all frequencies and for all levels of radiated disturbances within the CISPR indicating range of the measuring equipment.

Methods of measurement are covered in Part 2-3, and further information on radio disturbance is given in Part 3 of CISPR 16. Uncertainties, statistics and limit modelling are covered in Part 4 of CISPR 16.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

CISPR 16-1-1, Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-1: Radio disturbance and immunity measuring apparatus – Measuring apparatus

CISPR 16-2-3, Specification for radio disturbance and immunity measuring apparatus and methods – Part 2-3: Methods of measurement of disturbances and immunity – Radiated disturbance measurements

CISPR 16-3, Specification for radio disturbance and immunity measuring apparatus and methods – Part 3: CISPR technical reports

CISPR 16-4 (all parts), Specification for radio disturbance and immunity measuring apparatus and methods – Uncertainties, statistics and limit modelling

CISPR 16-4-2:2003, Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics and limit modelling – Uncertainty in EMC measurements

IEC 60050-161, International Electrotechnical Vocabulary (IEV) – Chapter 161: Electromagnetic compatibility

SOMMAIRE

AV	ANT-F	ROPOS	8
1	Doma	aine d'application	12
2	Réfé	ences normatives	12
3	Term	es et définitions	14
4	Antei	nnes pour la mesure des perturbations radioélectriques ravonnées	16
	4.1	Précision des mesures de champs	16
	4.2	Gamme de fréquences de 9 kHz à 150 kHz	18
	4.3	Gamme de fréquences de 150 kHz à 30 MHz	18
	4.4	Gamme de fréquences de 30 MHz à 300 MHz	20
	4.5	Gamme de fréquences de 300 MHz à 1 000 MHz	28
	4.6	Gamme de fréquences de 1 GHz à 18 GHz	30
	4.7	Montages utilisant les antennes particulières	30
5	Empl de fre	acements d'essai pour les mesures du champ perturbateur dans la gamme équences de 30 MHz à 1 000 MHz	32
	5.1	Emplacement d'essai en espace libre	32
	5.2	Enceinte de protection contre les intempéries	32
	5.3	Zone libre d'obstacles	32
	5.4	Environnement radiofréquence ambiant d'un emplacement d'essai	34
	5.5	Plan de sol	38
	5.6	Procédure de validation des emplacements en espace libre	38
	5.7	Aptitude des emplacements d'essai avec plan de sol	46
	5.8	Aptitude des emplacements d'essai sans plan de sol	56
_	5.9	Evaluation de la table d'essai et du mât d'antenne	74
6	Chan	bre réverbérante pour la mesure de la puissance totale rayonnée	78
	6.1	Chambre	78
7	Cellu	les TEM pour les mesures d'immunité aux perturbations rayonnées	84
8	Empl dans	acements d'essai pour la mesure des champs radioélectriques perturbateurs la gamme de fréquences de 1 GHz à 18 GHz	84
	8.1	Emplacement d'essai de référence	84
	8.2	Validation de l'emplacement d'essai	84
	8.3	Autres emplacements d'essai possibles	112
Anr	nexe A	(normative) Paramètres des antennes à large bande	114
Anr fou	nexe E et de	8 (normative) Equations donnant les caractéristiques du monopole (antenne 1 m) et caractérisation du réseau d'adaptation associé à l'antenne	122
Anr par	nexe (des c	C (normative) Système d'antennes cadres pour la mesure des courants induits hamps magnétiques dans la gamme de fréquences de 9 kHz à 30 MHz	132
Anr libr	nexe E e dans) (informative) Détails de construction des emplacements d'essai en espace s la gamme de fréquences 30 MHz à 1 000 MHz (Article 5)	150
Anr libr	nexe E e pour	é (normative) Procédure de validation de l'emplacement d'essai en espace la gamme de fréquences de 30 MHz à 1 000 MHz (Article 5)	158
Anr I'en	nexe F nplace	(informative) Base pour le critère de 4 dB pour l'acceptabilité de ment (Article 5)	174
Bib	liogra	phie	178

Figure 1 – Facteurs d'antenne des doublets courts pour R_L = 50 Ω	22
Figure 2 – Zone libre d'obstacles d'un emplacement d'essai équipé d'une table tournante (voir 5.3)	36
Figure 3 – Zone libre d'obstacles avec appareil en essai fixe (voir 5.3)	36
Figure 4 – Configuration des équipements pour la mesure en polarisation horizontale de l'affaiblissement de l'emplacement (voir 5.6 et Annexe E)	40
Figure 5 – Configuration des équipements pour la mesure en polarisation verticale de l'affaiblissement de l'emplacement avec des dipôles accordés (voir 5.6 et Annexe E)	40
Figure 6a – Positions typiques d'antenne pour d'autres emplacements d'essai – Mesures d' <i>ANE</i> en polarisation verticale	50
Figure 6b – Positions typiques d'antenne pour d'autres emplacements d'essai – Mesures d'ANE en polarisation horizontale	50
Figure 6c – Positions typiques d'antenne pour d'autres emplacements d'essai – Mesure d' <i>ANE</i> en polarisation verticale pour un appareil de volume inférieur à 1 m de profondeur, 1,5 m de large, 1,5 m de haut et dont la périphérie est à plus de 1 m du matériau le plus proche susceptible de provoquer des réflexions	52
Figure 6d – Positions typiques d'antenne pour d'autres emplacements d'essai – Mesure d' <i>ANE</i> en polarisation horizontale pour un appareil de volume inférieur à 1 m de profondeur, 1,5 m de large, 1,5 m de haut et dont la périphérie est à plus de 1 m du matériau le plus proche susceptible de provoquer des réflexions	52
Figure 6 – Positions typiques pour d'autres emplacements d'essai	52
Figure 7 – Graphique de l' <i>ANE</i> théorique en espace libre en fonction de la fréquence pour différentes distances de mesure (voir Equation 4)	58
Figure 8 – Positions de mesure pour la procédure de validation de l'emplacement	64
Figure 9 – Exemple d'une position de mesure et inclinaison d'antenne pour la procédure de validation de l'emplacement	66
Figure 10 – Montage de mesure de la référence type d'emplacement en espace libre	72
Figure 11 – Position de l'antenne par rapport au champ au-dessus d'une table d'essai rectangulaire (vue de dessus)	78
Figure 12 – Position de l'antenne au- dessus de la table d'essai (vue de côté)	78
Figure 13 – Exemple d'agitateur typique à aubes	80
Figure 14 – Gamme de l'affaiblissement de couplage en fonction de la fréquence pour une chambre utilisant l'agitateur de la Figure 13	82
Figure 15 – Exemple de diagramme de rayonnement du plan E d'une antenne d'émission (à titre informatif uniquement)	90
Figure 16 – Exemple de diagramme de rayonnement du plan H d'une antenne d'émission (à titre informatif uniquement)	92
Figure 17 – Positions de mesure de S_{VSWR} dans un plan horizontal – voir description en 8.2.2.2.1	94
Figure 18 – Positions de S_{VSWR} (exigences en hauteur)	98
Figure 19 – Exigences relatives aux positions d'essai conditionnelles	110
Figure B.1 – Méthode utilisant un analyseur de réseau	126
Figure B.2 – Méthode utilisant un appareil de mesure de bruit RF et un générateur de signal	126
Figure B.3 – Exemple du montage du condensateur pour une antenne fictive	128
Figure C.1 – Système d'antennes cadres, constitué de trois antennes de grand diamètre, occupant des plans mutuellement perpendiculaires	134
Figure C.2 – Une antenne de grand diamètre, comportant deux fentes diamétralement opposées, placées à égale distance de la sonde de courant C	136

Figure C.3 – Construction de la fente d'une antenne	138
Figure C.4 – Exemple de construction de fente dont la rigidité est assurée par une plaquette de circuit imprimé	138
Figure C.5 – Construction du boîtier métallique renfermant la sonde de courant	140
Figure C.6 – Exemple montrant le cheminement de plusieurs câbles de l'appareil en essai afin de s'assurer qu'il n'y a pas de couplage capacitif entre ces câbles et les antennes cadres	140
Figure C.7 – Les huit positions du dipôle symétrique/dissymétrique pendant la validation de l'antenne cadre de grand diamètre	142
Figure C.8 – Facteur de validation d'une antenne cadre de 2 m de diamètre	142
Figure C.9 – Construction du dipôle symétrique/dissymétrique	144
Figure C.10 – Facteurs de conversion C_{dA} (pour la conversion en dB (µA/m)) et C_{dV} (pour la conversion en dB (µV/m)) pour les deux distances de mesure normalisées d	146
Figure C.11 – Sensibilité S _D d'une antenne cadre de diamètre <i>D</i> par rapport à une antenne cadre de 2 m de diamètre	146
Figure D.1 – Critère de Rayleigh pour la rugosité du plan de sol	152
Tableau 1 – Affaiblissement normalisé de l'emplacement (géométries recommandéespour les doublets demi-onde accordés avec polarisation horizontale)	54
Tableau 2 – Affaiblissement normalisé de l'emplacement* (géométries recommandéespour les antennes à large bande)	56
Tableau 3 – Dimensions maximales du volume d'essai par rapport à la distance d'essai	62
Tableau 4 – Gammes de fréquences et tailles de pas	68
Tableau 5 – Positions d'essai de S_{VSWR}	100
Tableau 6 – Exigences sur les rapports de S_{VSWR}	112
Tableau E.1 – Affaiblissement normalisé de l'emplacement* (Géométries conseillées pour les antennes à large bande)	166
Tableau E.2 – Affaiblissement normalisé de l'emplacement (Géométries conseilléespour les doublets demi-onde accordés, à polarisation horizontale)	168
Tableau E.3 – Affaiblissement normalisé de l'emplacement (Géométries conseilléespour les doublets demi-onde accordés, à polarisation verticale)	170
Tableau E.4 – Facteurs de correction de couplage mutuel pour la géométrie utilisantdes doublets résonnants accordables séparés de 3 m	172
Tableau F.1 – Bilan d'erreur	174

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE COMITÉ INTERNATIONAL SPÉCIAL DES PERTURBATIONS RADIOÉLECTRIQUES

SPÉCIFICATIONS DES MÉTHODES ET DES APPAREILS DE MESURE DES PERTURBATIONS RADIOÉLECTRIQUES ET DE L'IMMUNITÉ AUX PERTURBATIONS RADIOÉLECTRIQUES –

Partie 1-4: Appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Matériels auxiliaires – Perturbations rayonnées

AVANT-PROPOS

- 1) La Commission Electrotechnique Internationale (CEI) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI entre autres activités publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de la CEI"). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de la CEI intéressés sont représentés dans chaque comité d'études.
- 3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que la CEI s'assure de l'exactitude du contenu technique de ses publications; la CEI ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
- 4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de la CEI s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de la CEI et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
- 5) La CEI n'a prévu aucune procédure de marquage valant indication d'approbation et n'engage pas sa responsabilité pour les équipements déclarés conformes à une de ses Publications.
- 6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
- 7) Aucune responsabilité ne doit être imputée à la CEI, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de la CEI, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de la CEI ou de toute autre Publication de la CEI, ou au crédit qui lui est accordé.
- 8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.
- 9) L'attention est attirée sur le fait que certains des éléments de la présente Publication de la CEI peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.

La Norme internationale CISPR 16-1-4 a été établie par le sous-comité A du CISPR: Mesures des perturbations radioélectriques et méthodes statistiques.

Cette seconde édition de la CISPR 16-1-4 annule et remplace la première édition parue en 2003, l'amendement 1 (2004) et l'amendement 2 (2005).

Le document CISPR/A/710/FDIS, circulé comme amendement 3 auprès des Comités nationaux de la CEI, a conduit à la publication de la nouvelle édition.

Le texte de cette norme est basé sur la première édition, son Amendement 1, son Amendement 2 et sur les documents suivants:

FDIS	Rapport de vote
CISPR/A/710/FDIS	CISPR/A/722/RVD

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.

Cette publication a été rédigée selon les Directives ISO/CEI, Partie 2.

Une liste de toutes les parties de la CISPR 16, sous le titre général *Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques*, est disponible sur le site web de la CEI.

La CISPR 16-1 est constituée des cinq parties suivantes, sous le titre général Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques:

- Partie 1-1: Appareils de mesure,
- Partie 1-2: Matériels auxiliaires Perturbations conduites,
- Partie 1-3: Matériels auxiliaires Puissance perturbatrice,
- Partie 1-4: Matériels auxiliaires Perturbations rayonnées,
- Partie 1-5: Emplacements d'essai pour l'étalonnage des antennes de 30 MHz à 1 000 MHz.

Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de maintenance indiquée sur le site web de la CEI sous «http://webstore.iec.ch» dans les données relatives à la publication recherchée. A cette date, la publication sera

- reconduite;
- supprimée;
- remplacée par une édition révisée, ou
- amendée.

SPÉCIFICATIONS DES MÉTHODES ET DES APPAREILS DE MESURE DES PERTURBATIONS RADIOÉLECTRIQUES ET DE L'IMMUNITÉ AUX PERTURBATIONS RADIOÉLECTRIQUES –

Partie 1-4: Appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Matériels auxiliaires – Perturbations rayonnées

1 Domaine d'application

La présente partie de la CISPR 16 est une norme fondamentale qui spécifie les caractéristiques et les performances des appareils de mesure de perturbations rayonnées dans la gamme de fréquences de 9 kHz à 18 GHz.

Elle comprend les spécifications pour les matériels auxiliaires suivants: antenne et emplacement d'essai, cellules TEM et chambre réverbérante.

Il faut que les exigences de cette publication soient satisfaites à toutes les fréquences et à tous niveaux de perturbation radioélectrique rayonnée, dans les limites de la plage de lecture des appareils de mesure du CISPR.

Les méthodes de mesure sont traitées dans la Partie 2-3, et des informations supplémentaires sur les perturbations radioélectriques sont données dans la Partie 3 de la CISPR 16. Les incertitudes, les statistiques et la modélisation des limites sont couvertes par la Partie 4 de la CISPR 16.

2 Références normatives

Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

CISPR 16-1-1, Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Partie 1-1: Appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Appareils de mesure

CISPR 16-2-3, Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Partie 2-3: Méthodes de mesure des perturbations et de l'immunité – Mesures des perturbations rayonnées

CISPR 16-3, Specification for radio disturbance and immunity measuring apparatus and methods – Part 3: CISPR technical reports

CISPR 16-4 (toutes les parties), Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Incertitudes, statistiques et modélisation des limites

CISPR 16-4-2:2003, Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Partie 4-2: Incertitudes, statistiques et modélisation des limites – Incertitudes de mesure CEM

CEI 60050-161, Vocabulaire Electrotechnique International (VEI) – Chapitre 161: Compatibilité électromagnétique