

Edition 3.0 2010-04

# INTERNATIONAL STANDARD

# NORME INTERNATIONALE



# INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

COMITÉ INTERNATIONAL SPÉCIAL DES PERTURBATIONS RADIOÉLECTRIQUES

BASIC EMC PUBLICATION PUBLICATION FONDAMENTALE EN CEM

Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-4: Radio disturbance and immunity measuring apparatus – Antennas and test sites for radiated disturbance measurements

Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Partie 1-4: Appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Antennes et emplacements d'essai pour les mesures des perturbations rayonnées

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE



ICS 33.100.10; 33.100.20

ISBN 978-2-88910-011-8

# CONTENTS

| FO | REWO                 | )RD                    |                                                                                                               | 6  |
|----|----------------------|------------------------|---------------------------------------------------------------------------------------------------------------|----|
| 1  | Scope                |                        |                                                                                                               | 8  |
| 2  | Normative references |                        |                                                                                                               | 8  |
| 3  | Term                 | s, defin               | itions and abbreviations                                                                                      | 9  |
|    | 3.1                  | Terms                  | and definitions                                                                                               | 9  |
|    | 3.2                  | Abbrev                 | viations                                                                                                      | 12 |
| 4  | Anter                | nnas for               | measurement of radiated radio disturbance                                                                     | 12 |
|    | 4.1                  | Genera                 | al                                                                                                            | 12 |
|    | 4.2                  | Physic                 | al parameter for radiated emission measurements                                                               | 12 |
|    | 4.3                  | Freque                 | ency range 9 kHz to 150 kHz                                                                                   | 13 |
|    |                      | 4.3.1                  | General                                                                                                       | 13 |
|    |                      | 4.3.2                  | Magnetic antenna                                                                                              | 13 |
|    |                      | 4.3.3                  | Shielding of loop antenna                                                                                     | 13 |
|    | 4.4                  | Freque                 | ency range 150 kHz to 30 MHz                                                                                  | 13 |
|    |                      | 4.4.1                  | Electric antenna                                                                                              | 13 |
|    |                      | 4.4.2                  | Magnetic antenna                                                                                              | 14 |
|    |                      | 4.4.3                  | Balance/cross-polar performance of antennas                                                                   | 14 |
|    | 4.5                  | Freque                 | ency range 30 MHz to 1 000 MHz                                                                                | 14 |
|    |                      | 4.5.1                  | General                                                                                                       | 14 |
|    |                      | 4.5.2                  | Low-uncertainty antenna for use if there is an alleged non-compliance to the <i>E</i> -field limit            | 14 |
|    |                      | 4.5.3                  | Antenna characteristics                                                                                       | 14 |
|    |                      | 4.5.4                  | Balance of antenna                                                                                            | 16 |
|    |                      | 4.5.5                  | Cross-polar response of antenna                                                                               | 18 |
|    | 4.6                  | Freque                 | ency range 1 GHz to 18 GHz                                                                                    | 18 |
|    | 4.7                  | Specia                 | I antenna arrangements – Loop antenna system                                                                  | 19 |
| 5  | Test<br>range        | sites for<br>e of 30 I | r measurement of radio disturbance field strength for the frequency<br>MHz to 1 000 MHz                       | 19 |
|    | 5.1                  | Genera                 | al                                                                                                            | 19 |
|    | 5.2                  | OATS                   |                                                                                                               | 19 |
|    |                      | 5.2.1                  | General                                                                                                       | 19 |
|    |                      | 5.2.2                  | Weather protection enclosure                                                                                  | 20 |
|    |                      | 5.2.3                  | Obstruction-free area                                                                                         | 20 |
|    |                      | 5.2.4                  | Ambient radio frequency environment of a test site                                                            | 21 |
|    |                      | 5.2.5                  | Ground plane                                                                                                  | 22 |
|    |                      | 5.2.6                  | OATS validation procedure                                                                                     | 22 |
|    | 5.3                  | Test si                | te suitability for other ground-plane test sites                                                              | 26 |
|    |                      | 5.3.1                  | General                                                                                                       | 26 |
|    |                      | 5.3.2                  | Normalized site attenuation for alternative test sites                                                        | 26 |
|    |                      | 5.3.3                  | Site attenuation                                                                                              | 30 |
|    |                      | 5.3.4                  | Conducting ground plane                                                                                       | 30 |
|    | 5.4                  | Test si                | te suitability without ground plane                                                                           | 31 |
|    |                      | 5.4.1                  | Measurement considerations for free space test sites, as realized by fully-absorber-lined shielded enclosures | 31 |
|    |                      | 5.4.2                  | Site performance                                                                                              | 32 |
|    |                      | 5.4.3                  | Site validation criteria                                                                                      | 40 |
|    | 5.5                  | Evalua                 | tion of set-up table and antenna tower                                                                        | 40 |

|              |                     | 5.5.1                | General                                                                                                                                            | 40  |
|--------------|---------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|              |                     | 5.5.2                | Evaluation procedure for set-up table influences                                                                                                   | 40  |
| 6            | Reve                | rberating            | g chamber for total radiated power measurement                                                                                                     | 42  |
|              | 6.1                 | Genera               | Ι                                                                                                                                                  | 42  |
|              | 6.2                 | Chamb                | er                                                                                                                                                 | 42  |
|              |                     | 6.2.1                | Chamber size and shape                                                                                                                             | 42  |
|              |                     | 6.2.2                | Door, openings in walls, and mounting brackets                                                                                                     | 42  |
|              |                     | 6.2.3                | Stirrers                                                                                                                                           | 43  |
|              |                     | 6.2.4                | Test for the efficiency of the stirrers                                                                                                            | 43  |
|              |                     | 6.2.5                | Coupling attenuation                                                                                                                               | 44  |
| 7            | ТЕМ                 | cells for            | immunity to radiated disturbance measurement                                                                                                       | 45  |
| 8            | Test :<br>range     | sites for<br>e 1 GHz | measurement of radio disturbance field strength for the frequency to 18 GHz                                                                        | 45  |
|              | 8.1                 | Genera               | ۱                                                                                                                                                  | 45  |
|              | 8.2                 | Referer              | nce test site                                                                                                                                      | 45  |
|              | 8.3                 | Validati             | on of the test site                                                                                                                                | 45  |
|              |                     | 8.3.1                | General                                                                                                                                            | 45  |
|              |                     | 8.3.2                | Acceptance criterion for site validation                                                                                                           | 46  |
|              |                     | 8.3.3                | Site validation procedures – evaluation of <i>S</i> <sub>VSWR</sub>                                                                                | 47  |
|              | 8.4                 | Alterna              | tive test sites                                                                                                                                    | 59  |
| 9            | Comr                | non moo              | de absorption devices                                                                                                                              | 59  |
|              | 9.1                 | Genera               | 1                                                                                                                                                  | 59  |
|              | 9.2                 | CMAD                 | S-parameter measurements                                                                                                                           | 59  |
|              | 9.3                 | CMAD                 | test jig                                                                                                                                           | 59  |
|              | 9.4                 | Measur               | ement method using the TRL calibration                                                                                                             | 61  |
|              | 9.5                 | Specific             | cation of ferrite clamp-type CMAD                                                                                                                  | 63  |
|              | 9.6                 | CMAD<br>tracking     | performance (degradation) check using spectrum analyzer and generator                                                                              | 63  |
| Anr          | nex A (             | normati              | ve) Parameters of antennas                                                                                                                         | 66  |
| Anr          | nex B (             | normati              | ve) Monopole (1 m rod) antenna performance equations and                                                                                           | 70  |
| Anna         |                     |                      | n the associated antenna matching network                                                                                                          | 73  |
| mea          | asurer              | normati              | the frequency range of 9 kHz to 30 MHz                                                                                                             | 78  |
| Anr          | nex D               | (normati             | ve) Construction details for open area test sites in the frequency                                                                                 | 87  |
| Anr          | nex E (             | normati              | ve) Validation procedure of the open area test site for the frequency                                                                              | 07  |
| ran          | ge of 3             | 30 MHz               | to 1 000 MHz (see Clause 5)                                                                                                                        | 91  |
| Anr          | nex F (             | informa              | tive) Basis for 4 dB site acceptability criterion (see Clause 5)                                                                                   | 99  |
| Bibl         | liograp             | ohy                  |                                                                                                                                                    | 101 |
| Fig.<br>gro  | ure 1 -<br>und re   | - Schem<br>flections | atic of radiation from EUT reaching an LPDA antenna directly and via s on a 3 m site, showing the half beamwidth, $\varphi$ , at the reflected ray | 15  |
| Fiq          | ure 2 -             | - Obstru             | ction-free area of a test site with a turntable (see 5.2.3)                                                                                        | 21  |
| Fia          | ure 3 -             | - Obstru             | ction-free area with stationary EUT (see 5.2.3)                                                                                                    | 21  |
| Fig          | ure 4 -             | - Config             | uration of equipment for measuring site attenuation in horizontal                                                                                  |     |
| pola         | arizatio            | on (see              | b.2.6 and Annex E)                                                                                                                                 | 23  |
| Fig:<br>pola | ure 5 -<br>arizatio | - Config<br>on using | uration of equipment for measuring site attenuation in vertical tuned dipoles (see 5.2.6 and Annex E)                                              | 24  |

| Figure 6 – Typical antenna positions for alternative test site – Vertical polarization NSA measurements                                          | . 28 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 7 – Typical antenna positions for alternative test site – Horizontal polarization NSA measurements                                        | . 28 |
| Figure 8 – Typical antenna positions for alternative test site – Vertical polarization NSA measurements for a smaller EUT                        | .29  |
| Figure 9 – Typical antenna positions for alternative test site – Horizontal polarization NSA measurements for a smaller EUT                      | . 29 |
| Figure 10 – Graph of theoretical free-space NSA as a function of the frequency for different measurement distances (see Equation (10))           | .33  |
| Figure 11 – Measurement positions for the site validation procedure                                                                              | .35  |
| Figure 12 – Example of one measurement position and antenna tilt for the site validation procedure                                               | . 36 |
| Figure 13 – Typical free-space reference site attenuation measurement set-up                                                                     | . 39 |
| Figure 14 – Position of the antenna relative to the edge above a rectangle set-up table (top view)                                               | .42  |
| Figure 15 – Antenna position above the set-up table (side view)                                                                                  | .42  |
| Figure 16 – Example of a typical paddle stirrer                                                                                                  | .43  |
| Figure 17 – Range of coupling attenuation as a function of frequency for a chamber using the stirrer shown in Figure 16                          | .44  |
| Figure 18 – Transmit antenna <i>E</i> -plane radiation pattern example (this example is for informative purposes only)                           | .48  |
| Figure 19 – Transmit antenna <i>H</i> -plane radiation pattern (this example is for informative purposes only)                                   | .49  |
| Figure 20 – <i>S</i> <sub>VSWR</sub> measurement positions in a horizontal plane (see 8.3.3.2.2 for description)                                 | . 50 |
| Figure 21 – S <sub>VSWR</sub> positions (height requirements)                                                                                    | .52  |
| Figure 22 – Conditional test position requirements                                                                                               | . 58 |
| Figure 23 – Definition of the reference planes inside the test jig                                                                               | .60  |
| Figure 24 – The four configurations for the TRL calibration                                                                                      | .62  |
| Figure 25 – Limits for the magnitude of $S_{11}$ , measured according to provisions of 9.1 to 9.3.                                               | .63  |
| Figure 26 – Example of a 50 $\Omega$ adaptor construction in the vertical flange of the jig                                                      | .64  |
| Figure 27 – Example of a matching adaptor with balun or transformer                                                                              | .65  |
| Figure 28 – Example of a matching adaptor with resistive matching network                                                                        | .65  |
| Figure A.1 – Short dipole antenna factors for $R_{\rm L}$ = 50 $\Omega$                                                                          | .69  |
| Figure B.1 – Method using network analyzer                                                                                                       | .75  |
| Figure B.2 – Method using measuring receiver and signal generator                                                                                | .76  |
| Figure B.3 – Example of capacitor mounting in dummy antenna                                                                                      | .76  |
| Figure C.1 – The loop-antenna system, consisting of three mutually perpendicular large-<br>loop antennas                                         | .79  |
| Figure C.2 – A large-loop antenna containing two opposite slits, positioned symmetrically with respect to the current probe C                    | .80  |
| Figure C.3 – Construction of the antenna slit                                                                                                    | .81  |
| Figure C.4 – Example of antenna-slit construction using a strap of printed circuit board to obtain a rigid construction                          | .81  |
| Figure C.5 – Construction for the metal box containing the current probe                                                                         | . 82 |
| Figure C.6 – Example showing the routing of several cables from an EUT to ensure that there is no capacitive coupling from the leads to the loop | . 82 |

| Figure C.7 – The eight positions of the balun-dipole during validation of the large-loop antenna                                                                              | 83 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure C.8 – Validation factor for a large loop-antenna of 2 m diameter                                                                                                       | 83 |
| Figure C.9 – Construction of the balun-dipole                                                                                                                                 | 84 |
| Figure C.10 – Conversion factors $C_{dA}$ [for conversion into dB( $\mu$ A/m)] and $C_{dV}$ (for conversion into dB( $\mu$ V/m)) for two standardized measuring distances $d$ | 85 |
| Figure C.11 – Sensitivity $S_D$ of a large-loop antenna with diameter $D$ relative to a large-loop antenna having a diameter of 2 m                                           | 85 |
| Figure D.1 – The Rayleigh criterion for roughness in the ground plane                                                                                                         | 88 |

| Table 1 – Normalized site attenuation (recommended geometries for tuned half-wave     dipoles with horizontal polarization) | 30 |
|-----------------------------------------------------------------------------------------------------------------------------|----|
| Table 2 – Normalized site attenuation* (recommended geometries for broadband antennas)                                      | 31 |
| Table 3 – Maximum dimensions of test volume versus test distance                                                            | 34 |
| Table 4 – Frequency ranges and step sizes                                                                                   | 36 |
| Table 5 – S <sub>VSWR</sub> test position designations                                                                      | 53 |
| Table 6 – S <sub>VSWR</sub> reporting requirements                                                                          | 58 |
| Table E.1 – Normalized site attenuation <sup>a</sup> – Recommended geometries for broadband   antennas                      | 95 |
| Table E.2 – Normalized site attenuation – Recommended geometries for tuned half-   wave dipoles, horizontal polarization    | 96 |
| Table E.3 – Normalized site attenuation – Recommended geometries for tuned half-   wave dipoles – vertical polarization     | 97 |
| Table E.4 – Mutual coupling correction factors for geometry using resonant tunable   dipoles spaced 3 m apart               | 98 |
| Table F.1 – Error budget                                                                                                    | 99 |
|                                                                                                                             |    |

INTERNATIONAL ELECTROTECHNICAL COMMISSION INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

# SPECIFICATION FOR RADIO DISTURBANCE AND IMMUNITY MEASURING APPARATUS AND METHODS –

# Part 1-4: Radio disturbance and immunity measuring apparatus – Antennas and test sites for radiated disturbance measurements

#### FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committee; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard CISPR 16-1-4 has been prepared by CISPR subcommittee A: Radiointerference measurements and statistical methods.

This third edition of CISPR 16-1-4 cancels and replaces the second edition published in 2007 and its Amendments 1 (2007) and 2 (2008). It is a technical revision.

This edition includes the following significant technical change with respect to the previous edition: provisions are added to address evaluation of a set-up table in the frequency range above 1 GHz.

It has the status of a basic EMC publication in accordance with IEC Guide 107, *Electromagnetic compatibility – Guide to the drafting of electromagnetic compatibility publications.* 

The text of this standard is based on the following documents:

| FDIS             | Report on voting |
|------------------|------------------|
| CISPR/A/885/FDIS | CISPR/A/891/RVD  |

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of CISPR 16 series, under the general title *Specification for radio disturbance and immunity measuring apparatus and methods*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

#### SPECIFICATION FOR RADIO DISTURBANCE AND IMMUNITY MEASURING APPARATUS AND METHODS –

#### Part 1-4: Radio disturbance and immunity measuring apparatus – Antennas and test sites for radiated disturbance measurements

#### 1 Scope

This part of CISPR 16 specifies the characteristics and performance of equipment for the measurement of radiated disturbances in the frequency range 9 kHz to 18 GHz. Specifications for antennas and test sites are included.

NOTE In accordance with IEC Guide 107, CISPR 16-1-4 is a basic EMC publication for use by product committees of the IEC. As stated in Guide 107, product committees are responsible for determining the applicability of the EMC standard. CISPR and its sub-committees are prepared to co-operate with product committees in the evaluation of the value of particular EMC tests for specific products.

The requirements of this publication apply at all frequencies and for all levels of radiated disturbances within the CISPR indicating range of the measuring equipment.

Methods of measurement are covered in Part 2-3, and further information on radio disturbance is given in Part 3 of CISPR 16. Uncertainties, statistics and limit modelling are covered in Part 4 of CISPR 16.

#### 2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

CISPR 16-1-1, Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-1: Radio disturbance and immunity measuring apparatus – Measuring apparatus

CISPR 16-1-5:2003, Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-5: Radio disturbance and immunity measuring apparatus – Antenna calibration test sites for 30 MHz to 1 000 MHz

CISPR 16-2-3, Specification for radio disturbance and immunity measuring apparatus and methods – Part 2-3: Methods of measurement of disturbances and immunity – Radiated disturbance measurements

CISPR/TR 16-3:2003, Specification for radio disturbance and immunity measuring apparatus and methods – Part 3: CISPR technical reports Amendment 1(2005) Amendment 2(2006)

CISPR 16-4-2, Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics and limit modelling – Uncertainty in EMC measurements

IEC 60050-161, International Electrotechnical Vocabulary (IEV) – Chapter 161: Electromagnetic compatibility

IEC 61000-4-20, *Electromagnetic compatibility (EMC) – Part 4-20: Testing and measurement techniques – Emission and immunity testing in transverse electromagnetic (TEM) waveguides* 

# SOMMAIRE

| AV | VANT-PROPOS            |           |                                                                                                                                          |     |  |
|----|------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
| 1  | Domaine d'application1 |           |                                                                                                                                          | 110 |  |
| 2  | Références normatives1 |           |                                                                                                                                          | 110 |  |
| 3  | Term                   | es, défir | nitions et abréviations                                                                                                                  | 111 |  |
|    | 3.1                    | Termes    | s et définitions                                                                                                                         | 111 |  |
|    | 3.2                    | Abrévia   | ations                                                                                                                                   | 114 |  |
| 4  | Anter                  | ines poi  | ur la mesure des perturbations radioélectriques rayonnées                                                                                | 114 |  |
|    | 4.1                    | Généra    | lités                                                                                                                                    | 114 |  |
|    | 4.2                    | Paramé    | ètre physique pour les mesures des émissions rayonnées                                                                                   | 115 |  |
|    | 4.3                    | Gamme     | e de fréquences de 9 kHz à 150 kHz                                                                                                       | 115 |  |
|    |                        | 4.3.1     | Généralités                                                                                                                              | 115 |  |
|    |                        | 4.3.2     | Antenne magnétique                                                                                                                       | 115 |  |
|    |                        | 4.3.3     | Blindage de l'antenne cadre                                                                                                              | 116 |  |
|    | 4.4                    | Gamme     | e de fréquences de 150 kHz à 30 MHz                                                                                                      | 116 |  |
|    |                        | 4.4.1     | Antenne électrique                                                                                                                       | 116 |  |
|    |                        | 4.4.2     | Antenne magnétique                                                                                                                       | 116 |  |
|    |                        | 4.4.3     | Performance d'équilibrage et de polarisation croisée des antennes                                                                        | 116 |  |
|    | 4.5                    | Gamme     | e de fréquences de 30 MHz à 1 000 MHz                                                                                                    | 116 |  |
|    |                        | 4.5.1     | Généralités                                                                                                                              | 116 |  |
|    |                        | 4.5.2     | Antenne à faible incertitude pour utilisation en l'absence de non-                                                                       |     |  |
|    |                        |           | conformité présumée du champ <i>E</i>                                                                                                    | 117 |  |
|    |                        | 4.5.3     | Caractéristiques d'antenne                                                                                                               | 117 |  |
|    |                        | 4.5.4     | Symetrisation de l'antenne                                                                                                               |     |  |
|    | 4.0                    | 4.5.5     | Reponse de polarisation croisée de l'antenne                                                                                             | 120 |  |
|    | 4.0<br>17              | Montoo    | e de llequelles de l'GHZ à lo GHZ                                                                                                        | 121 |  |
| 5  | H.I<br>Empl            | nontay    | tes d'assai pour la mesure du champ radioélectrique perturbateur dans                                                                    | 122 |  |
| 5  | la gai                 | nme de    | fréquences de 30 MHz à 1 000 MHz                                                                                                         | 122 |  |
|    | 5.1                    | Généra    | lités                                                                                                                                    | 122 |  |
|    | 5.2                    | OATS (    | (emplacement d'essai en zone dégagée)                                                                                                    | 123 |  |
|    |                        | 5.2.1     | Généralités                                                                                                                              | 123 |  |
|    |                        | 5.2.2     | Enceinte de protection contre les intempéries                                                                                            | 123 |  |
|    |                        | 5.2.3     | Zone sans obstacle                                                                                                                       | 123 |  |
|    |                        | 5.2.4     | Environnement radiofréquence ambiant d'un emplacement d'essai                                                                            | 125 |  |
|    |                        | 5.2.5     | Plan de sol                                                                                                                              | 125 |  |
|    |                        | 5.2.6     | Procédure de validation d'OATS                                                                                                           | 125 |  |
|    | 5.3                    | Aptitud   | e des emplacements d'essai pour les autres emplacements d'essai à                                                                        | 130 |  |
|    |                        | 5.3.1     | Généralités                                                                                                                              | 130 |  |
|    |                        | 5.3.2     | Affaiblissement normalisé d'emplacement pour les autres<br>emplacements d'essai                                                          |     |  |
|    |                        | 5.3.3     | Affaiblissement de l'emplacement                                                                                                         | 134 |  |
|    |                        | 5.3.4     | Plan de sol conducteur                                                                                                                   | 134 |  |
|    | 5.4                    | Aptitud   | e des emplacements d'essai sans plan de sol                                                                                              | 135 |  |
|    |                        | 5.4.1     | Aspects de mesure pour les emplacements d'essai en espace libre constitués par des enceintes blindées entièrement tapissées d'absorbants | 135 |  |
|    |                        | 5.4.2     | Performances d'emplacement                                                                                                               | 136 |  |

|                      |                             | 5.4.3                            | Critères de validation d'emplacement                                                                                                                                                                          | 144 |
|----------------------|-----------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                      | 5.5                         | Évaluat                          | tion de la table d'essai et du pylône d'antenne                                                                                                                                                               | 144 |
|                      |                             | 5.5.1                            | Généralités                                                                                                                                                                                                   | 144 |
|                      |                             | 5.5.2                            | Procédure d'évaluation de l'influence de la table d'essai                                                                                                                                                     | 145 |
| 6                    | Charr                       | nbre de                          | réverbération pour la mesure de la puissance totale rayonnée                                                                                                                                                  | 147 |
|                      | 6.1                         | Généra                           | lités                                                                                                                                                                                                         | 147 |
|                      | 6.2                         | Chamb                            | re                                                                                                                                                                                                            | 147 |
|                      |                             | 6.2.1                            | Dimensions et forme de la chambre                                                                                                                                                                             | 147 |
|                      |                             | 6.2.2                            | Porte, ouvertures dans les parois et équerres de montage                                                                                                                                                      | 147 |
|                      |                             | 6.2.3                            | Agitateurs                                                                                                                                                                                                    | 147 |
|                      |                             | 6.2.4                            | Essai de rendement des agitateurs                                                                                                                                                                             | 148 |
|                      |                             | 6.2.5                            | Affaiblissement de couplage                                                                                                                                                                                   | 149 |
| 7                    | Cellu                       | les TEM                          | pour les mesures d'immunité aux perturbations rayonnées                                                                                                                                                       | 149 |
| 8                    | Empla<br>dans               | acemen<br>la gamn                | ts d'essai pour la mesure des champs radioélectriques perturbateurs<br>ne de fréquences de 1 GHz à 18 GHz                                                                                                     | 150 |
|                      | 8 1                         | Généra                           | lités                                                                                                                                                                                                         | 150 |
|                      | 8.2                         | Emplac                           | ement d'essai de référence                                                                                                                                                                                    |     |
|                      | 8.3                         | Validati                         | ion de l'emplacement d'essai                                                                                                                                                                                  | 150 |
|                      | 0.0                         | 8.3.1                            | Généralités                                                                                                                                                                                                   |     |
|                      |                             | 8.3.2                            | Critère d'acceptation pour la validation de l'emplacement                                                                                                                                                     |     |
|                      |                             | 8.3.3                            | Procédures de validation de l'emplacement – évaluation de $S_{VOVD}$                                                                                                                                          |     |
|                      | 8.4                         | Autres                           | emplacements d'essai                                                                                                                                                                                          | 164 |
| 9                    | Dispo                       | sitifs d'a                       | absorption en mode commun                                                                                                                                                                                     |     |
| •                    | Q 1                         | Gánára                           | litáe                                                                                                                                                                                                         | 164 |
|                      | 9.1                         | Mesure                           | s des paramètres S d'un CMAD                                                                                                                                                                                  | 165 |
|                      | 9.2                         | Montag                           |                                                                                                                                                                                                               | 165 |
|                      | 9.J<br>0.1                  | Méthod                           | e de mesure utilisant l'étalonnage TPI                                                                                                                                                                        | 166 |
|                      | 9.4<br>0.5                  | Spácifi                          | cation d'un CMAD du type à pince en ferrite                                                                                                                                                                   | 168 |
|                      | 9.6                         | Vérifica                         | ation de la performance (dégradation) des CMAD en utilisant un                                                                                                                                                | 100 |
|                      |                             | analyse                          | eur de spectre et un générateur de poursuite                                                                                                                                                                  | 169 |
| Anr                  | nexe A                      | (norma                           | tive) Paramètres des antennes                                                                                                                                                                                 | 172 |
| Anr<br>(an           | nexe B<br>tenne             | (norma<br>fouet de               | tive) Équations donnant les caractéristiques de l'antenne monopole<br>e 1 m) et caractérisation du réseau d'adaptation associé à l'antenne                                                                    | 179 |
| Anr<br>par           | nexe C<br>un ch             | ; (norma<br>amp ma               | tive) Système d'antennes cadres pour les mesures du courant induit gnétique dans la gamme de fréquences de 9 kHz à 30 MHz                                                                                     | 184 |
| Anr<br>dég           | nexe D<br>lagée             | ) (norma<br>dans la              | tive) Détails de construction des emplacements d'essai en zone<br>gamme de fréquences de 30 MHz à 1 000 MHz (voir Article 5)                                                                                  | 193 |
| Anr<br>dég           | nexe E<br>lagée             | (norma<br>pour la g              | tive) Procédure de validation de l'emplacement d'essai en zone<br>gamme de fréquences de 30 MHz à 1 000 MHz (voir Article 5)                                                                                  | 197 |
| Anr<br>Arti          | nexe F<br>cle 5)            | (inform                          | ative) Base du critère de 4 dB d'acceptabilité d'un emplacement (voir                                                                                                                                         | 205 |
| Bib                  | liograp                     | ohie                             |                                                                                                                                                                                                               | 207 |
| Figi<br>ante<br>prés | ure 1 -<br>enne L<br>sentar | - Représ<br>PDA dii<br>nt la moi | sentation schématique du rayonnement de l'EUT atteignant une<br>rectement et via des réflexions sur le sol sur un emplacement de 3 m, tié de l'ouverture de faisceau, $\varphi$ , au niveau du rayon réfléchi | 118 |
| Fig                  | ure 2 -                     | - Zone s                         | ans obstacle d'un emplacement d'essai équipé d'une table tournante                                                                                                                                            |     |
| (voi                 | r 5.2.3                     | 3)                               |                                                                                                                                                                                                               | 124 |
| Fig                  | ure 3 -                     | - Zone s                         | ans obstacle avec EUT fixe (voir 5.2.3)                                                                                                                                                                       | 124 |

| Figure 4 – Configuration des équipements pour la mesure en polarisation horizontale de l'affaiblissement de l'emplacement (voir 5.2.6 et Annexe E)                              | 7 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Figure 5 – Configuration des équipements pour la mesure en polarisation verticale de l'affaiblissement de l'emplacement avec des doublets accordés (voir 5.2.6 et Annexe E) 128 | 3 |
| Figure 6 – Positions types d'antenne pour les mesures de NSA en polarisation verticale d'autres emplacements d'essai                                                            | 2 |
| Figure 7 – Positions types d'antenne pour les mesures de NSA en polarisation horizontale d'autres emplacements d'essai                                                          | 2 |
| Figure 8 – Positions types d'antenne pour d'autres emplacements d'essai – Mesure de NSA en polarisation verticale pour un petit EUT133                                          | 3 |
| Figure 9 – Positions types d'antenne pour d'autres emplacements d'essai – Mesure de NSA en polarisation horizontale pour un petit EUT133                                        | 3 |
| Figure 10 – Graphique du NSA théorique en espace libre en fonction de la fréquence pour différentes distances de mesure (voir Équation (10))                                    | 7 |
| Figure 11 – Positions de mesure pour la procédure de validation de l'emplacement                                                                                                | ) |
| Figure 12 – Exemple de position de mesure et d'inclinaison d'antenne pour la procédure de validation de l'emplacement                                                           | ) |
| Figure 13 – Montage de mesure de l'affaiblissement d'emplacement de référence type en espace libre                                                                              | 3 |
| Figure 14 – Position de l'antenne par rapport au bord au-dessus d'une table d'essai rectangulaire (vue de dessus)                                                               | 3 |
| Figure 15 – Position de l'antenne au-dessus de la table d'essai (vue de côté)146                                                                                                | 3 |
| Figure 16 – Exemple d'agitateur à aubes type148                                                                                                                                 | 3 |
| Figure 17 – Gamme d'affaiblissement de couplage en fonction de la fréquence pour une chambre utilisant l'agitateur de la Figure 16                                              | ) |
| Figure 18 – Exemple de diagramme de rayonnement dans le plan <i>E</i> d'une antenne d'émission (à titre informatif uniquement)                                                  | 3 |
| Figure 19 – Diagramme de rayonnement dans le plan <i>H</i> d'une antenne d'émission (exemple donné à titre informatif uniquement)                                               | 1 |
| Figure 20 – Positions de mesure de <i>S</i> <sub>VSWR</sub> dans un plan horizontal (voir description en 8.3.3.2.2)                                                             | 5 |
| Figure 21 – Positions de S <sub>VSWR</sub> (exigences de hauteur)                                                                                                               | 7 |
| Figure 22 – Exigences relatives aux positions d'essai conditionnelles                                                                                                           | 3 |
| Figure 23 – Définition des plans de référence à l'intérieur du montage d'essai                                                                                                  | 3 |
| Figure 24 – Les quatre configurations pour l'étalonnage TRL                                                                                                                     | 3 |
| Figure 25 – Limites pour l'amplitude de $S_{11}$ , mesurée selon les dispositions de 9.1 à 9.3 169                                                                              | ) |
| Figure 26 – Exemple de conception d'adaptateur 50 $\Omega$ dans le flasque vertical du montage                                                                                  | ) |
| Figure 27 – Exemple d'adaptateur avec symétriseur ou transformateur                                                                                                             | ł |
| Figure 28 – Exemple d'adaptateur avec réseau d'adaptation résistif                                                                                                              | ł |
| Figure A.1 – Facteurs d'antenne des doublets courts pour $R_{\rm L}$ = 50 $\Omega$                                                                                              | 5 |
| Figure B.1 – Méthode utilisant un analyseur de réseau                                                                                                                           | ł |
| Figure B.2 – Méthode utilisant un récepteur de mesure et un générateur de signal                                                                                                | 2 |
| Figure B.3 – Exemple de montage du condensateur dans une antenne fictive                                                                                                        | 2 |
| Figure C.1 – Système d'antennes cadres, constitué de trois antennes de grand diamètre mutuellement perpendiculaires                                                             | 5 |
| Figure C.2 – Antenne de grand diamètre, comportant deux fentes opposées, positionnées symétriquement par rapport à la sonde de courant                                          | 3 |

CISPR 16-1-4 © CEI:2010 - 107 -

| Figure C.3 – Construction de la fente de l'antenne                                                                                                                          | . 187 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Figure C.4 – Exemple de construction de fente d'antenne utilisant une bande de circuit<br>imprimé pour obtenir une construction rigide                                      | 187   |
| Figure C.5 – Construction du boîtier métallique renfermant la sonde de courant                                                                                              | . 188 |
| Figure C.6 – Exemple montrant le cheminement de plusieurs câbles de l'EUT afin de<br>s'assurer qu'il n'y a pas de couplage capacitif entre les conducteurs et la boucle     | . 188 |
| Figure C.7 – Les huit positions du doublet symétrique/dissymétrique durant la validation<br>de l'antenne cadre de grand diamètre                                            | 189   |
| Figure C.8 – Facteur de validation d'une grande antenne cadre de 2 m de diamètre                                                                                            | . 189 |
| Figure C.9 – Construction du doublet symétrique/dissymétrique                                                                                                               | . 190 |
| Figure C.10 – Facteurs de conversion $C_{dA}$ [pour la conversion en dB (µA/m)] et $C_{dV}$ (pour la conversion en dB (µV/m)) pour deux distances de mesure normalisées $d$ | 191   |
| Figure C.11 – Sensibilité $S_{D}$ d'une antenne de grand diamètre d'un diamètre $D$ par rapport à une antenne de grand diamètre ayant un diamètre de 2 m                    | . 191 |
| Figure D.1 – Critère de Rayleigh pour la rugosité du plan de sol                                                                                                            | . 194 |

| Tableau 1 – Affaiblissement normalisé d'emplacement (géométries recommandées pourles doublets demi-onde accordés avec polarisation horizontale)   | 134 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Tableau 2 – Affaiblissement normalisé d'emplacement* (géométries recommandéespour les antennes à large bande)                                     | 135 |
| Tableau 3 – Dimensions maximales du volume d'essai en fonction de la distance d'essai                                                             | 138 |
| Tableau 4 – Gammes de fréquences et tailles de pas                                                                                                | 141 |
| Tableau 5 – Désignations des positions d'essai de S <sub>VSWR</sub>                                                                               | 158 |
| Tableau 6 – Exigences concernant les rapports de S <sub>VSWR</sub>                                                                                | 164 |
| Tableau E.1 – Affaiblissement normalisé d'emplacement <sup>a</sup> – Géométriesrecommandées pour les antennes à large bande                       | 201 |
| Tableau E.2 – Affaiblissement normalisé d'emplacement – Géométries recommandéespour les doublets demi-onde accordés avec polarisation horizontale | 202 |
| Tableau E.3 – Affaiblissement normalisé d'emplacement – Géométries recommandéespour les doublets demi-onde accordés avec polarisation verticale   | 203 |
| Tableau E.4 – Facteurs de correction de couplage mutuel pour la géométrie utilisantdes doublets résonnants accordables séparés de 3 m             | 204 |
| Tableau F.1 – Bilan d'erreur                                                                                                                      | 205 |

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE COMITÉ INTERNATIONAL SPÉCIAL DES PERTURBATIONS RADIOÉLECTRIQUES

# SPÉCIFICATIONS DES MÉTHODES ET DES APPAREILS DE MESURE DES PERTURBATIONS RADIOÉLECTRIQUES ET DE L'IMMUNITÉ AUX PERTURBATIONS RADIOÉLECTRIQUES –

### Partie 1-4: Appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Antennes et emplacements d'essai pour les mesures des perturbations rayonnées

#### **AVANT-PROPOS**

- 1) La Commission Electrotechnique Internationale (CEI) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI entre autres activités publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de la CEI"). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de la CEI intéressés sont représentés dans chaque comité d'études.
- 3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que la CEI s'assure de l'exactitude du contenu technique de ses publications; la CEI ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
- 4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de la CEI s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de la CEI et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
- 5) La CEI elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de la CEI. La CEI n'est responsable d'aucun des services effectués par les organismes de certification indépendants.
- 6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
- 7) Aucune responsabilité ne doit être imputée à la CEI, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de la CEI, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de la CEI ou de toute autre Publication de la CEI, ou au crédit qui lui est accordé.
- 8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.
- 9) L'attention est attirée sur le fait que certains des éléments de la présente Publication de la CEI peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.

La Norme internationale CISPR 16-1-4 a été établie par le sous-comité A du CISPR: Mesures des perturbations radioélectriques et méthodes statistiques.

Cette troisième édition de la CISPR 16-1-4 annule et remplace la deuxième édition publiée en 2007 et ses Amendements 1 (2007) et 2 (2008). Elle en constitue une révision technique.

La présente édition contient les modifications techniques significatives suivantes par rapport à l'édition précédente: des dispositions sont ajoutées pour traiter l'évaluation d'une table d'essai dans la gamme des fréquences supérieures à 1 GHz.

Elle a le statut de publication fondamentale en CEM en accord avec le Guide 107 de la CEI, Compatibilité électromagnétique – Guide pour la rédaction des publications sur la compatibilité électromagnétique.

Le texte de la présente norme est issu des documents suivants:

| FDIS             | Rapport de vote |
|------------------|-----------------|
| CISPR/A/885/FDIS | CISPR/A/891/RVD |

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.

Cette publication a été rédigée selon les Directives ISO/CEI, Partie 2.

Une liste de toutes les parties de la CISPR 16, sous le titre général *Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques*, est disponible sur le site web de la CEI.

Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de stabilité indiquée sur le site web de la CEI sous "http://webstore.iec.ch" dans les données relatives à la publication recherchée. A cette date, la publication sera

- reconduite,
- supprimée,
- remplacée par une édition révisée, ou
- amendée.

IMPORTANT – Le logo "colour inside" qui se trouve sur la page de couverture de cette publication indique qu'elle contient des couleurs qui sont considérées comme utiles à une bonne compréhension de son contenu. Les utilisateurs devraient, par conséquent, imprimer cette publication en utilisant une imprimante couleur.

# SPÉCIFICATIONS DES MÉTHODES ET DES APPAREILS DE MESURE DES PERTURBATIONS RADIOÉLECTRIQUES ET DE L'IMMUNITÉ AUX PERTURBATIONS RADIOÉLECTRIQUES –

# Partie 1-4: Appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Antennes et emplacements d'essai pour les mesures des perturbations rayonnées

#### 1 Domaine d'application

La présente partie de la CISPR 16 spécifie les caractéristiques et les performances des appareils de mesure de perturbations rayonnées dans la gamme de fréquences de 9 kHz à 18 GHz. Elle comprend les spécifications pour les antennes et les emplacements d'essai.

NOTE Conformément au Guide 107 de la CEI, la CISPR 16-1-4 est une publication fondamentale en CEM destinée à être utilisée par les comités de produits de la CEI. Comme indiqué dans le Guide 107, les comités de produits ont la responsabilité de déterminer s'il convient d'appliquer ou non cette norme d'essai en CEM. Le CISPR et ses sous-comités sont prêts à coopérer avec les comités de produits à l'évaluation de la valeur des essais d'immunité particuliers pour leurs produits.

Les exigences de cette publication s'appliquent à toutes les fréquences et à tous niveaux de perturbation rayonnée, dans les limites de la plage de lecture des appareils de mesure du CISPR.

Les méthodes de mesure sont traitées dans la Partie 2-3, et des informations supplémentaires sur les perturbations radioélectriques sont données dans la Partie 3 de la CISPR 16. Les incertitudes, les statistiques et la modélisation des limites sont couvertes par la Partie 4 de la CISPR 16.

#### 2 Références normatives

Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

CISPR 16-1-1, Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Partie 1-1: Appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Appareils de mesure

CISPR 16-1-5:2003, Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Partie 1-5: Appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Emplacements d'essai pour l'étalonnage des antennes de 30 MHz à 1 000 MHz

CISPR 16-2-3, Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Partie 2-3: Méthodes de mesure des perturbations et de l'immunité – Mesures des perturbations rayonnées

CISPR 16-1-4 © CEI:2010

CISPR/TR 16-3:2003, Specification for radio disturbance and immunity measuring apparatus and methods – Part 3: CISPR technical reports (disponible en anglais uniquement) Amendement 1(2005) Amendement 2(2006)

CISPR 16-4-2, Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Partie 4-2: Incertitudes, statistiques et modélisation des limites – Incertitudes de mesure CEM

CEI 60050-161, Vocabulaire Electrotechnique International (VEI) – Chapitre 161: Compatibilité électromagnétique

CEI 61000-4-20, Compatibilité électromagnétique (CEM) – Partie 4-20: Techniques d'essai et de mesure – Essais d'émission et d'immunité dans les guides d'onde TEM