

Edition 1.0 2007-08

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (0 Hz – 300 GHz)

Evaluation des équipements électroniques et électriques en relation avec les restrictions d'exposition humaine aux champs électromagnétiques (0 Hz – 300 GHz)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

PRICE CODE CODE PRIX

ICS 97.030

ISBN 2-8318-9269-4

CONTENTS

FO	OREWORD	4
1	Scope and object	6
2	Normative references	6
3	Terms and definitions	6
4	Compliance criteria	10
5	Assessment methods	
6	Evaluation of compliance to limits	
7	Applicability of compliance assessment methods	
	7.1 General	
	7.2 Generic procedure for assessment of equipment	14
8	Sources with multiple frequencies	17
	8.1 Introduction	17
	8.2 Frequency range from 1 Hz – 10 MHz (ICNIRP-based)	17
	8.2.1 Frequency domain assessment	
	8.2.2 Time domain assessment	
	8.3 Frequency range from 100 kHz = 300 GHz (ICNIRP-based)	
	8.4.1 Frequency domain assessment	
	8.4.2 Time domain assessment	
	8.5 Frequency range from 3 kHz – 300 GHz (IEEE-based)	23
9	Assessment report	23
	9.1 General	23
	9.2 Items to be recorded in the assessment report	24
	9.2.1 Assessment method	24
	9.2.2 Presentation of the results	24
4.0	9.2.3 Equipment using external antennas	
10	Information to be supplied with the equipment	24
Anı	nnex A (informative) Field calculation	25
Anr	nnex B (informative) SAR compliance assessment	
Anr	nnex C (informative) Information for numerical modelling	
Anr	nnex D (informative) Measurements of physical properties and body cu	rrents61
Anr	nnex E (informative) Specific absorption rate (SAR)	65
Anr	nnex F (informative) Measurement of <i>E</i> and <i>H</i> field	67
Anı	nnex G (informative) Source modelling	70
Bib	ibliography	73
Fig	gure 1 – Assessment flowchart	16
Fig	gure 2 – Schematic of "weighting circuit"	19
Fig	gure 3 – Dependency on frequency of the reference levels V plotted w daes	ith smoothing
Fig	gure 4 – Transfer function A	20

Figure A.1 – Geometry of antenna with largest linear dimension D	25
Figure A.2 – Current element $Id/sin(\omega t)$ at the origin of spherical coordinate system	26
Figure A.3 – Ratio of E^2 , H^2 , and $E \times H$ field components	27
Figure A.4 – Ratio of $E \times H$ field components for three typical antennas	28
Figure A.5 – Far-field = straight line, radiated near-field = lower line & all near-fields = other line	29
Figure C.1 – Numerical model of a homogenous ellipsoid	34
Figure C.2 – Numerical model of a homogenous cuboid	35
Figure C.3a — Description of the whole body	36
Figure C.3b — Details of the construction of the head and shoulders	37
Figure C.3 – Numerical model of a homogenous human body	37
Figure C.4 – Schematic of straight wire	41
Figure C.5 – Schematic of circular coil	42
Figure C.6 – Block diagram of the method	43
Figure C.7 – Test situation for validation – Current loop in front of a cuboid	45
Figure C.8 – Distribution of the electric current density J in the planes $x = + 0,20$ m (left) and $y = 0,0$ m (right)	46
Figure C.9 – Helmholtz coils and prolate spheroid	47
Figure C.10a – Magnetic field	47
Figure C.10b – Induced current density	48
Figure C.10 – Modelling results for a 60 cm by 30 cm prolate spheroid	48
Figure C.11 – Induced current density	48
Figure C.12a – Magnetic field	49
Figure C.12b – Induced current density	49
Figure C.12 – Modelling results for a 160 cm by 80 cm prolate spheroid	49
Figure C.13 – Distribution of induced electric current density	50
Figure C.14 – Schematic position of source <i>Q</i> against model <i>K</i>	51
Figure C.15 – Position of source <i>Q</i> , sensor and model <i>K</i>	52
Figure C.16 – Hot spot	54
Figure C.17 – Gradient of flux density and area G	55
Figure C.18 – Equivalent coil	55
Figure C.19 – Gradients of flux density and coil	56
Figure C.20 – Measurement distance and related distances	58
Table 1 – Characteristics and parameters of the equipment to be considered	13
Table 2 – List of possible assessment methods	14
Table B.1 – Determining whole-body SAR implicit compliance levels	30
Table C.1 – Conductivity of tissue types	38
Table C.2 – Relative permittivity of tissue types	40
Table C.3 – Summary of results	50
Table C.4 – Values $G[m]$ of different coils with radius r_{COII} and distance d_{COII}	56
Table C.5 – Coupling factor $k \begin{bmatrix} \frac{A/m^2}{T} \end{bmatrix}$ at 50 Hz for the whole body	57

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ASSESSMENT OF ELECTRONIC AND ELECTRICAL EQUIPMENT RELATED TO HUMAN EXPOSURE RESTRICTIONS FOR ELECTROMAGNETIC FIELDS (0 Hz – 300 GHz)

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committee; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62311 has been prepared by IEC technical committee 106: Methods for the assessment of electric, magnetic and electromagnetic fields associated with human exposure.

The text of this standard is based on the following documents:

FDIS	Report on voting
106/129/FDIS	106/134/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.

ASSESSMENT OF ELECTRONIC AND ELECTRICAL EQUIPMENT RELATED TO HUMAN EXPOSURE RESTRICTIONS FOR ELECTROMAGNETIC FIELDS (0 Hz – 300 GHz)

1 Scope and object

This International Standard applies to electronic and electrical equipment for which no dedicated product- or product family standard regarding human exposure to electromagnetic fields applies.

The frequency range covered is 0 Hz to 300 GHz.

The object of this generic standard is to provide assessment methods and criteria to evaluate such equipment against basic restrictions or reference levels on exposure of the general public related to electric, magnetic and electromagnetic fields and induced and contact current.

NOTE This standard is intended to cover both intentional and non-intentional radiators. If the equipment complies with the requirements in another relevant standard, e.g. EN 50371 covering low power equipment, then the requirements of this standard (IEC 62311) are considered to be met and the application of this standard to that equipment is not necessary. See also Clause 7.2.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-161, International Electrotechnical Vocabulary – Chapter 161: Electromagnetic compatibility

SOMMAIRE

AVA	ANT-PROPOS	76
1	Domaine d'application et objet	78
2	Références normatives	78
3	Termes et définitions	78
4	Critères de conformité	82
5	Méthodes d'évaluation	82
6	Evaluation de la conformité aux limites	
7	Applicabilité des méthodes d'évaluation de conformité	
	7.1 Généralités	
	7.2 Procédure générique d'évaluation d'un équipement	
8	Sources à fréquences multiples	
	8.1 Introduction	
	8.2 Plage de fréquences de 1 Hz – 10 MHz (à partir de l'ICNIRP)	
	8.2.1 Evaluation dans le domaine fréquentiel	
	8.2.2 Evaluation dans le domaine temporel	91
	8.3 Plage de fréquences de 100 kHz – 300 GHz (à partir de l'ICNIRP)	93
	8.4 Gamme de fréquence de 0 kHz – 5 MHz (à partir de l'IEEE)	94
	8.4.1 Evaluation dans le domaine frequentiel	
	8.4.2 Evaluation dans le domaine temporei	
q	Rapport d'évaluation	95
0	9.1 Généralités	96
	9.2 Eléments devant figurer dans le rapport d'évaluation	
	9.2.1 Méthode d'évaluation	
	9.2.2 Présentation des résultats	
	9.2.3 Equipements utilisant des antennes extérieures	96
10	Renseignements à fournir avec l'équipement	97
Anr	nexe A (informative) Calcul d'un champ	
Anr	nexe B (informative) Evaluation de la conformité DAS	103
Anr	pexe C. (informative). Informations pour une modélisation numérique	105
Δnr	pexe D (informative). Mesure des propriétés physiques et des courants corporels	100
Δnr	Dexe E (informative) Débit d'absorption spécifique (D4S)	138
Ann	nexe E (informative) Mesure des champs F et H	140
Ann	nexe (informative) Medéliection d'une source	140
AIII		143
Bibl	liographie	146
Figu	ure 1 – Diagramme d'évaluation	
Figu	ure 2 – Schéma d'un "circuit de pondération"	
Figu	ure 3 – Dépendance par rapport à la fréquence des niveaux de référence V avec	
liss	age des arêtes	92
Fig	ure 4 – Fonction de transfert A	92
Figu	ure A.1 – Géométrie de l'antenne dont la plus grande dimension linéaire est D	98

Figure A.2 – Elément de courant $Idlsin(\omega t)$ à l'origine de coordonnées sphériques	99
Figure A.3 – Rapport des composantes de champ de E^2 , H^2 , et $E \times H$. 100
Figure A.4 – Rapport des composantes de champ $E \times H$ pour trois antennes caractéristiques	. 101
Figure A.5 – Champ lointain = ligne droite, champ proche rayonné = ligne du bas, tous autres champs proches = autre ligne	. 102
Figure C.1 – Modèle numérique d'un ellipsoïde homogène	. 107
Figure C.2 – Modèle numérique d'un cube homogène	. 108
Figure C.3a – Description du corps entier	. 109
Figure C.3b – Détails de la construction de la tête et des épaules	. 110
Figure C.3 – Modèle numérique d'un corps humain homogène	. 110
Figure C.4 – Schéma du fil rectiligne	. 114
Figure C.5 – Schéma de bobine circulaire	. 115
Figure C.6 – Organigramme de la méthode	. 116
Figure C.7 – Situation d'essai pour validation – Boucle de courant en face d'un cube	. 118
Figure C.8 – Distribution de la densité de courant électrique J dans les plans $x = + 0,20 \text{ m}$ (gauche) et $y = 0,0 \text{ m}$ (droite)	. 119
Figure C.9 – Bobines de Helmholtz et sphéroïde allongé	. 120
Figure C.10a – Champ magnétique	. 120
Figure C.10b – Densité de courant induit	. 121
Figure C.10 – Modélisation des résultats pour un sphéroïde allongé de 60 cm par 30 cm	. 121
Figure C.11 – Densité de courant induit	. 121
Figure C.12a – Champ magnétique	. 122
Figure C.12b – Densité de courant induit	. 122
Figure C.12 – Modélisation des résultats pour un sphéroïde allongé de 160 cm par 80 cm	. 122
Figure C.13 – Distribution de la densité de courant électrique induit	. 123
Figure C.14 – Position de la source Q par rapport au modèle K	. 124
Figure C.15 – Position de la source Q, du capteur et du modèle K	. 125
Figure C.16 – Point chaud	. 127
Figure C.17 – Gradient de la densité de flux et surface G	. 128
Figure C.18 – Bobine équivalente	. 128
Figure C.19 – Gradients de densité de flux et bobine	. 129
Figure C.20 – Distance de mesure et distance en relation avec cette dernière	. 131
Tableau 1 – Caractéristiques et paramètres de l'équipement à considérer	85
Tableau 2 – Liste des méthodes d'évaluation possibles	86
Tableau B.1 – Détermination des niveaux de conformité implicite au DAS corps entier	. 103
Tableau C.1 – Conductivité des types de tissus	. 111
Tableau C.2 – Permittivité relative des types de tissus	. 113
Tableau C.3 – Résumé des résultats	. 123
Tableau C.4 – Valeurs $G[m]$ de différentes bobines de rayon r_{COII} et distance d_{COII}	. 129
Tableau C.5 – Facteur de couplage $k \begin{bmatrix} \frac{A/m^2}{T} \end{bmatrix}$ à 50 Hz pour le corps entier	. 130

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

ÉVALUATION DES ÉQUIPEMENTS ÉLECTRONIQUES ET ÉLECTRIQUES EN RELATION AVEC LES RESTRICTIONS D'EXPOSITION HUMAINE AUX CHAMPS ÉLECTROMAGNÉTIQUES (0 Hz – 300 GHz)

AVANT-PROPOS

- 1) La Commission Electrotechnique Internationale (CEI) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI entre autres activités publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de la CEI"). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisations.
- Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de la CEI intéressés sont représentés dans chaque comité d'études.
- 3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que la CEI s'assure de l'exactitude du contenu technique de ses publications; la CEI ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
- 4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de la CEI s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de la CEI et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
- 5) La CEI n'a prévu aucune procédure de marquage valant indication d'approbation et n'engage pas sa responsabilité pour les équipements déclarés conformes à une de ses Publications.
- 6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
- 7) Aucune responsabilité ne doit être imputée à la CEI, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de la CEI, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de la CEI ou de toute autre Publication de la CEI, ou au crédit qui lui est accordé.
- 8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.
- 9) L'attention est attirée sur le fait que certains des éléments de la présente Publication de la CEI peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.

La Norme internationale CEI 62311 a été préparée par le comité d'études 106 de la CEI: Méthodes d'évaluation des champs électriques, magnétiques et électromagnétiques en relation avec l'exposition humaine.

Le texte de cette norme est issu des documents suivants:

FDIS	Rapport de vote
106/129/FDIS	106/134/RVD

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.

Cette publication a été rédigée selon les Directives ISO/CEI, Partie 2.

Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de maintenance indiquée sur le site web de la CEI sous «http://webstore.iec.ch» dans les données relatives à la publication recherchée. A cette date, la publication sera

- reconduite;
- supprimée;
- remplacée par une édition révisée, ou
- amendée.

ÉVALUATION DES ÉQUIPEMENTS ÉLECTRONIQUES ET ÉLECTRIQUES EN RELATION AVEC LES RESTRICTIONS D'EXPOSITION HUMAINE AUX CHAMPS ÉLECTROMAGNÉTIQUES (0 Hz – 300 GHz)

1 Domaine d'application et objet

La présente Norme internationale s'applique aux appareils électroniques et électriques auxquels aucune norme concernant l'exposition humaine aux champs électromagnétiques, dédiée à un produit ou à une famille de produits, ne s'applique.

La plage de fréquences couverte va de 0 Hz à 300 GHz.

L'objet de la présente norme générique est de fournir des méthodes et des critères d'évaluation pour démontrer que de tels appareils satisfont aux restrictions de base ou aux niveaux de référence pour l'exposition du public aux champs électriques, magnétiques et électromagnétiques, ainsi qu'aux courants induits et de contact.

NOTE Cette norme est destinée à couvrir les éléments rayonnants intentionnels et non-intentionnels. Si l'équipement est conforme aux exigences d'une norme appropriée, par exemple. EN 50371 qui couvre les équipements de faible puissance, alors les exigences de la présente norme (CEI 62311) sont considérées comme remplies et l'application de cette norme à cet équipement n'est pas nécessaire. Voir aussi la Clause 7.2.

2 Références normatives

Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

CEI 60050-161, Vocabulaire Electrotechnique International – Chapitre 161 – Compatibilité électromagnétique