

Edition 5.0 2010-07

INTERNATIONAL STANDARD

Industrial communication networks – Fieldbus specifications – Part 2: Physical layer specification and service definition

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS, 25.040, 35.100, 35.240.50

ISBN 978-2-88912-051-2

CONTENTS

FO	REWORD	14
0	Introduction	16
1	Scope	20
2	Normative references	20
3	Terms and definitions	22
4	Symbols and abbreviations	45
5	DLL – PhL interface	56
6	Systems management – PhL interface	77
7	DCE independent sublayer (DIS)	91
8	DTE – DCE interface and MIS-specific functions	93
9	Medium dependent sublayer (MDS)	. 114
10	MDS – MAU interface	. 135
11	Types 1 and 7: Medium attachment unit: voltage mode, linear-bus-topology 150 Ω twisted-pair wire medium	. 143
12	Types 1 and 3: Medium attachment unit: 31,25 kbit/s, voltage-mode with low-power option, bus- and tree-topology, 100 Ω wire medium	. 158
13	Type 1: Medium attachment unit: current mode, twisted-pair wire medium	. 175
14	Type 1: Medium attachment unit: current mode (1 A), twisted-pair wire medium	. 185
15	Types 1 and 7: Medium attachment unit: dual-fiber optical media	. 194
16	Type 1: Medium attachment unit: 31,25 kbit/s, single-fiber optical medium	. 201
17	Type 1: Medium attachment unit: radio signaling	. 204
18	Type 2: Medium attachment unit: 5 Mbit/s, voltage-mode, coaxial wire medium	.214
19	Type 2: Medium attachment unit: 5 Mbit/s, optical medium	. 226
20	Type 2: Medium attachment unit: network access port (NAP)	. 231
21	Type 3: Medium attachment unit: synchronous transmission, 31,25 kbit/s, voltage mode, wire medium	.234
22	Type 3: Medium attachment unit: asynchronous transmission, wire medium	. 251
23	Type 3: Medium attachment unit: asynchronous transmission, optical medium	. 268
24	Type 4: Medium attachment unit: RS-485	. 277
25	Type 4: Medium attachment unit: RS-232	. 279
26	Type 6: This clause has been removed	. 280
27	Type 8: Medium attachment unit: twisted-pair wire medium	. 280
28	Type 8: Medium attachment unit: optical media	. 285
29	Type 12: Medium attachment unit: electrical medium	. 292
30	Type 16: Medium attachment unit: optical fiber medium at 2, 4, 8 and 16 Mbit/s	. 294
31	Type 18: Medium attachment unit: basic medium	. 307
32	Type 18: Medium attachment unit: powered medium	.311
Anr	nex A (normative) Type 1: Connector specification	. 320
	nex B (informative) Types 1 and 3: Cable specifications and trunk and spur lengths the 31,25 kbit/s voltage-mode MAU	. 328
Anr	nex C (informative) Types 1 and 7: Optical passive stars	. 330
Anr	nex D (informative) Types 1 and 7: Star topology	. 331

Annex E (informative) Type 1: Alternate fibers	335
Annex F (normative) Type 2: Connector specification	336
Annex G (normative) Type 2: Repeater machine sublayers (RM, RRM) and redundant PhLs	339
Annex H (informative) Type 2: Reference design examples	350
Annex I (normative) Type 3: Connector specification	356
Annex J (normative) Type 3: Redundancy of PhL and medium	363
Annex K (normative) Type 3: Optical network topology	364
Annex L (informative) Type 3: Reference design examples for asynchronous transmission, wire medium, intrinsically safe	373
Annex M (normative) Type 8: Connector specification	375
Annex N (normative) Type 16: Connector specification	380
Annex O (normative) Type 16: Optical network topology	381
Annex P (informative) Type 16: Reference design example	386
Annex Q (normative) Type 18: Connector specification	390
Annex R (normative) Type 18: Media cable specifications	395
Bibliography	399
Figure 1 – General model of physical layer	17
Figure 2 – Mapping between data units across the DLL – PhL interface	57
Figure 3 – Data service for asynchronous transmission	62
Figure 4 – Interactions for a data sequence of a master: identification cycle	67
Figure 5 – Interactions for a data sequence of a master: data cycle	68
Figure 6 – Interactions for a data sequence of a slave: identification cycle	69
Figure 7 – Interactions for a data sequence of a slave: data cycle	70
Figure 8 – Interactions for a check sequence of a master	71
Figure 9 – Interactions for a check sequence of a slave	72
Figure 10 – Reset, Set-value, Get-value	81
Figure 11 – Event service	
Figure 12 – Interface between PhL and PNM1 in the layer model	
Figure 13 – Reset, Set-value, Get-value PhL services	87
Figure 14 – Event PhL service	
Figure 15 – Allocation of the interface number	
Figure 16 – Configuration of a master	
Figure 17 – Configuration of a slave with an alternative type of transmission	
Figure 18 – Configuration of a bus coupler with an alternative type of transmission	
Figure 19 – DTE/DCE sequencing machines	
Figure 20 – State transitions with the ID cycle request service	
Figure 21 – MIS-MDS interface: identification cycle request service	
Figure 22 – MIS-MDS interface: identification cycle request service	
Figure 23 – State transitions with the data cycle request service	
Figure 24 – MIS-MDS interface: data cycle request service	
Figure 25 – State transitions with the data sequence classification service	
Figure 26 – Protocol machine for the message transmission service	

Figure 27 – Protocol machine for the data sequence identification service	.112
Figure 28 – Protocol machine for the message receipt service	.113
Figure 29 – Protocol data unit (PhPDU)	. 114
Figure 30 – PhSDU encoding and decoding	.115
Figure 31 – Manchester encoding rules	.115
Figure 32 – Preamble and delimiters	. 117
Figure 33 – Manchester coded symbols	. 118
Figure 34 – PhPDU format, half duplex	. 119
Figure 35 – PhPDU format, full duplex	.121
Figure 36 – Data sequence PhPDU	. 125
Figure 37 – Structure of the header in a data sequence PhPDU	125
Figure 38 – Check sequence PhPDU	.126
Figure 39 – Structure of a headers in a check sequence PhPDU	.126
Figure 40 – Structure of the status PhPDU	. 127
Figure 41 – Structure of the header in a status PhPDU	. 127
Figure 42 – Structure of the medium activity status PhPDU	.128
Figure 43 – Structure of the header in a medium activity status PhPDU	
Figure 44 – Reset PhPDU	. 129
Figure 45 – Configuration of a master	. 130
Figure 46 – Configuration of a slave	. 130
Figure 47 – Configuration of a bus coupler	. 130
Figure 48 – Protocol data unit	. 131
Figure 49 – PhSDU encoding and decoding	. 131
Figure 50 – Manchester encoding rules	. 131
Figure 51 – Example of an NRZI-coded signal	. 134
Figure 52 – Fill signal	.134
Figure 53 – Jitter tolerance	. 141
Figure 54 – Transmit circuit test configuration	. 147
Figure 55 – Output waveform	.148
Figure 56 – Transmitted and received bit cell jitter (zero crossing point deviation)	.149
Figure 57 – Signal polarity	. 150
Figure 58 – Receiver sensitivity and noise rejection	.151
Figure 59 – Power supply ripple and noise	. 154
Figure 60 – Fieldbus coupler	. 156
Figure 61 – Transition from receiving to transmitting	. 163
Figure 62 – Power supply ripple and noise	. 167
Figure 63 – Test circuit for single-output power supplies	. 168
Figure 64 – Test circuit for power distribution through an IS barrier	.169
Figure 65 – Test circuit for multiple output supplies with signal coupling	. 170
Figure 66 – Fieldbus coupler	.172
Figure 67 – Protection resistors	172
Figure 68 – Test configuration for current-mode MAU	.178
Figure 69 – Transmitted and received bit cell jitter (zero crossing point deviation)	179

Figure 70 – Noise test circuit for current-mode MAU	181
Figure 71 – Transmitted and received bit cell jitter (zero crossing point deviation)	
Figure 72 – Power supply harmonic distortion and noise	
Figure 73 – Optical wave shape template	
Figure 74 – Cellular radio topology and reuse of frequencies	208
Figure 75 – Radio segment between wired segments topology	209
Figure 76 – Mixed wired and radio medium fieldbus topology	210
Figure 77 – Components of 5 Mbit/s, voltage-mode, coaxial wire PhL variant	215
Figure 78 – Coaxial wire MAU block diagram	215
Figure 79 – Coaxial wire MAU transmitter	216
Figure 80 – Coaxial wire MAU receiver operation	217
Figure 81 – Coaxial wire MAU transmit mask	218
Figure 82 – Coaxial wire MAU receive mask	219
Figure 83 – Transformer symbol	
Figure 84 – 5 Mbit/s, voltage-mode, coaxial wire topology example	
Figure 85 – Coaxial wire medium topology limits	
Figure 86 – Coaxial wire medium tap electrical characteristics	224
Figure 87 – MAU block diagram 5 Mbit/s, optical fiber medium	227
Figure 88 – NAP reference model	231
Figure 89 – Example of transient and permanent nodes	232
Figure 90 – NAP transceiver	233
Figure 91 – NAP cable	234
Figure 92 – Circuit diagram of the principle of measuring impedance	239
Figure 93 – Definition of CMRR	240
Figure 94 – Block circuit diagram of the principle of measuring CMRR	240
Figure 95 – Power supply ripple and noise	243
Figure 96 – Output characteristic curve of a power supply of the category EEx ib	
Figure 97 – Output characteristic curve of a power supply of the category EEx ia	250
Figure 98 – Repeater in linear bus topology	253
Figure 99 – Repeater in tree topology	253
Figure 100 – Example for a connector with integrated inductance	255
Figure 101 – Interconnecting wiring	255
Figure 102 – Bus terminator	256
Figure 103 – Linear structure of an intrinsically safe segment	258
Figure 104 – Topology example extended by repeaters	259
Figure 105 – Bus terminator	
Figure 106 – Waveform of the differential voltage	
Figure 107 – Test set-up for the measurement of the idle level for devices with an integrated termination resistor	
Figure 108 – Test set-up for the measurement of the idle level for devices with a connectable termination resistor	
Figure 109 – Test set-up for measurement of the transmission levels	
Figure 110 – Test set-up for the measurement of the receiving levels	
Figure 111 – Fieldbus model for intrinsic safety	

Figure 112 – Communication device model for intrinsic safety	266
Figure 113 – Connection to the optical network	269
Figure 114 – Principle structure of optical networking	270
Figure 115 – Definition of the standard optical link	270
Figure 116 – Signal template for the optical transmitter	275
Figure 117 – Recommended interface circuit	279
Figure 118 – MAU of an outgoing interface	280
Figure 119 – MAU of an incoming interface	281
Figure 120 – Remote bus link	281
Figure 121 – Interface to the transmission medium	282
Figure 122 – Wiring	285
Figure 123 – Terminal resistor network	285
Figure 124 – Fiber optic remote bus cable	
Figure 125 – Optical fiber remote bus link	286
Figure 126 – Optical wave shape template optical MAU	288
Figure 127 – Optical transmission line	294
Figure 128 – Optical signal envelope	296
Figure 129 – Display of jitter (J _{noise})	297
Figure 130 – Input-output performance of a slave	299
Figure 131 – Functions of a master connection	302
Figure 132 – Valid transmitting signals during the transition from fill signal to telegram delimiters	304
Figure 133 – Valid transmitting signals during the transition from telegram delimiter to	205
Figure 133 – Valid transmitting signals during the transition from telegram delimiter to fill signal	
Figure 133 – Valid transmitting signals during the transition from telegram delimiter to fill signal Figure 134 – Functions of a slave connection	306
Figure 133 – Valid transmitting signals during the transition from telegram delimiter to fill signal Figure 134 – Functions of a slave connection Figure 135 – Network with two slaves	306 307
 Figure 133 – Valid transmitting signals during the transition from telegram delimiter to fill signal Figure 134 – Functions of a slave connection Figure 135 – Network with two slaves Figure 136 – Minimum interconnecting wiring 	306 307 308
 Figure 133 – Valid transmitting signals during the transition from telegram delimiter to fill signal Figure 134 – Functions of a slave connection Figure 135 – Network with two slaves Figure 136 – Minimum interconnecting wiring Figure 137 – Dedicated cable topology 	306 307 308 309
 Figure 133 – Valid transmitting signals during the transition from telegram delimiter to fill signal Figure 134 – Functions of a slave connection Figure 135 – Network with two slaves Figure 136 – Minimum interconnecting wiring Figure 137 – Dedicated cable topology Figure 138 – T-branch topology 	306 307 308 309 309
 Figure 133 – Valid transmitting signals during the transition from telegram delimiter to fill signal Figure 134 – Functions of a slave connection Figure 135 – Network with two slaves Figure 136 – Minimum interconnecting wiring Figure 137 – Dedicated cable topology Figure 138 – T-branch topology Figure 139 – Communication element isolation 	306 307 308 309 309 311
 Figure 133 – Valid transmitting signals during the transition from telegram delimiter to fill signal Figure 134 – Functions of a slave connection Figure 135 – Network with two slaves Figure 136 – Minimum interconnecting wiring Figure 137 – Dedicated cable topology Figure 138 – T-branch topology Figure 139 – Communication element isolation Figure 140 – Communication element and I/O isolation 	306 307 308 309 309 311 311
 Figure 133 – Valid transmitting signals during the transition from telegram delimiter to fill signal Figure 134 – Functions of a slave connection Figure 135 – Network with two slaves Figure 136 – Minimum interconnecting wiring Figure 137 – Dedicated cable topology Figure 138 – T-branch topology Figure 139 – Communication element isolation Figure 140 – Communication element and I/O isolation Figure 141 – Minimum interconnecting wiring 	306 307 308 309 309 311 311 312
 Figure 133 – Valid transmitting signals during the transition from telegram delimiter to fill signal. Figure 134 – Functions of a slave connection	306 307 308 309 309 311 311 312 313
 Figure 133 – Valid transmitting signals during the transition from telegram delimiter to fill signal Figure 134 – Functions of a slave connection Figure 135 – Network with two slaves Figure 136 – Minimum interconnecting wiring Figure 137 – Dedicated cable topology Figure 138 – T-branch topology Figure 139 – Communication element isolation Figure 140 – Communication element and I/O isolation Figure 141 – Minimum interconnecting wiring. Figure 142 – Flat cable topology Figure 143 – Dedicated cable topology 	306 307 308 309 309 311 311 312 313 313
 Figure 133 – Valid transmitting signals during the transition from telegram delimiter to fill signal Figure 134 – Functions of a slave connection	306 307 308 309 311 311 312 313 313 313
 Figure 133 – Valid transmitting signals during the transition from telegram delimiter to fill signal Figure 134 – Functions of a slave connection Figure 135 – Network with two slaves Figure 136 – Minimum interconnecting wiring Figure 137 – Dedicated cable topology Figure 138 – T-branch topology Figure 139 – Communication element isolation Figure 140 – Communication element and I/O isolation Figure 141 – Minimum interconnecting wiring. Figure 142 – Flat cable topology Figure 143 – Dedicated cable topology 	306 307 308 309 311 311 312 313 313 313 316
 Figure 133 – Valid transmitting signals during the transition from telegram delimiter to fill signal. Figure 134 – Functions of a slave connection Figure 135 – Network with two slaves Figure 136 – Minimum interconnecting wiring. Figure 137 – Dedicated cable topology Figure 138 – T-branch topology Figure 139 – Communication element isolation Figure 140 – Communication element and I/O isolation. Figure 141 – Minimum interconnecting wiring. Figure 142 – Flat cable topology Figure 143 – Dedicated cable topology Figure 143 – Dedicated cable topology Figure 144 – T-branch topology Figure 145 – Type 18-PhL-P power distribution. Figure 146 – Type 18-PhL-P power distribution. 	306 307 308 309 311 311 312 313 313 316 316
 Figure 133 – Valid transmitting signals during the transition from telegram delimiter to fill signal Figure 134 – Functions of a slave connection	306 307 308 309 309 311 311 312 313 313 316 316 318
Figure 133 – Valid transmitting signals during the transition from telegram delimiter to fill signal Figure 134 – Functions of a slave connection Figure 135 – Network with two slaves Figure 136 – Minimum interconnecting wiring Figure 137 – Dedicated cable topology Figure 138 – T-branch topology Figure 139 – Communication element isolation Figure 140 – Communication element and I/O isolation Figure 141 – Minimum interconnecting wiring Figure 142 – Flat cable topology Figure 143 – Dedicated cable topology Figure 143 – Dedicated cable topology Figure 144 – T-branch topology Figure 145 – Type 18-PhL-P power distribution Figure 147 – Type 18-PhL-P power supply filtering and protection	306 307 308 309 309 311 311 312 313 313 316 316 318 318
 Figure 133 – Valid transmitting signals during the transition from telegram delimiter to fill signal. Figure 134 – Functions of a slave connection	306 307 308 309 311 311 312 313 313 316 318 318 318 318
Figure 133 – Valid transmitting signals during the transition from telegram delimiter to fill signal Figure 134 – Functions of a slave connection Figure 135 – Network with two slaves Figure 136 – Minimum interconnecting wiring Figure 137 – Dedicated cable topology Figure 138 – T-branch topology Figure 139 – Communication element isolation Figure 140 – Communication element and I/O isolation Figure 142 – Flat cable topology Figure 143 – Dedicated cable topology Figure 144 – T-branch topology Figure 145 – Type 18-PhL-P power distribution Figure 146 – Type 18-PhL-P power distribution Figure 147 – Type 18-PhL-P power supply filtering and protection Figure 148 – Communication element isolation	306 307 308 309 309 311 311 312 313 313 316 316 318 318 318 318 319
Figure 133 – Valid transmitting signals during the transition from telegram delimiter to fill signal Figure 134 – Functions of a slave connection Figure 135 – Network with two slaves Figure 136 – Minimum interconnecting wiring Figure 137 – Dedicated cable topology Figure 138 – T-branch topology Figure 139 – Communication element isolation Figure 140 – Communication element and I/O isolation Figure 142 – Flat cable topology Figure 143 – Dedicated cable topology Figure 144 – T-branch topology Figure 145 – Type 18-PhL-P power distribution Figure 146 – Type 18-PhL-P power supply filtering and protection Figure 148 – Communication element isolation Figure 149 – Communication element and i/o isolation	306 307 308 309 309 311 311 312 313 313 316 316 318 318 318 318 319

Figure A.3 – External fieldbus connector keyways, keys, and bayonet pins and grooves	322
Figure A.4 – External fieldbus connector intermateability dimensions	323
Figure A.5 – External fieldbus connector contact arrangement	324
Figure A.6 – Contact designations for the external connector for typical industrial environments	325
Figure A.7 – External fixed (device) side connector for typical industrial environments: dimensions	325
Figure A.8 – External free (cable) side connector for typical industrial environments: dimensions	326
Figure A.9 – Optical connector for typical industrial environments (FC connector)	326
Figure A.10 – Optical connector for typical industrial environments (ST connector)	327
Figure C.1 – Example of an optical passive reflective star	330
Figure C.2 – Example of an optical passive transmitive star	330
Figure D.1 – Example of star topology with 31,25 kbit/s, single fiber mode, optical MAU	331
Figure D.2 – Multi-star topology with an optical MAU	331
Figure D.3 – Example of mixture between wire and optical media for a 31,25 kbit/s bit rate	333
Figure D.4 – Example of mixture between wire and optical media	
Figure F.1 – Pin connector for short range optical medium	
Figure F.2 – Crimp ring for short range optical medium	
Figure G.1 – PhL repeater device reference model	
Figure G.2 – Reference model for redundancy	
Figure G.3 – Block diagram showing redundant coaxial medium and NAP	
Figure G.4 – Block diagram showing ring repeaters	
Figure G.5 – Segmentation query	
Figure G.6 – Segmentation response	
Figure G.7 – Main switch state machine	347
Figure G.8 – Port 1 sees network activity first	
Figure G.9 – Port 2 sees network activity first	349
Figure H.1 – Coaxial wire MAU RxDATA detector	351
Figure H.2 – Coaxial wire MAU RxCarrier detection	352
Figure H.3 – Redundant coaxial wire MAU transceiver	352
Figure H.4 – Single channel coaxial wire MAU transceiver	353
Figure H.5 – Coaxial wire medium tap	354
Figure H.6 – Non-isolated NAP transceiver	355
Figure H.7 – Isolated NAP transceiver	355
Figure I.1 – Schematic of the station coupler	356
Figure I.2 – Pin assignment of the male and female connectors IEC 60947-5-2 (A coding)	357
Figure I.3 – Connector pinout, front view of male and back view of female respectively	
Figure I.4 – Connector pinout, front view of female M12 connector	
Figure I.5 – Connector pinout, front view of male M12 connector	
Figure I.6 – M12 Tee	
Figure I.7 – M12 Bus termination	
Figure J.1 – Redundancy of PhL MAU and Medium	

Figure K.1 – Optical MAU in a network with echo	
Figure K.2 – Optical MAU in a network without echo	
Figure K.3 – Optical MAU with echo via internal electrical feedback of the receive signal.	
Figure K.4 – Optical MAU without echo function	
Figure K.5 – Optical network with star topology	
Figure K.6 – Optical network with ring topology	
Figure K.7 – Optical network with bus topology	
Figure K.8 – Tree structure built from a combination of star structures	
Figure K.9 – Application example for an ANSI TIA/EIA-485-A / fiber optic converter	
Figure L.1 – Bus termination integrated in the communication device	
Figure L.2 – Bus termination in the connector	
Figure L.3 – External bus termination	
Figure M.1 – Outgoing interface 9-position female subminiature D connector at the device	
Figure M.2 – Incoming interface 9-position male subminiature D connector at the device	
Figure M.3 – Terminal connector at the device	
Figure M.4 – Ferrule of an optical F-SMA connector for polymer optical fiber (980/1 000 μm)	
Figure M.5 – Type 8 fiber optic hybrid connector housing	
Figure M.6 – Type 8 fiber optic hybrid connector assignment	
Figure O.1 – Topology	
Figure 0.2 – Structure of a single-core cable (example)	
Figure 0.3 – Optical power levels	
Figure P.1 – Example of an implemented DPLL	
Figure P.2 – DPLL status diagram	
Figure P.3 – DPLL timing	
Figure Q.1 – PhL-P device connector r-a	
Figure Q.2 – PhL-P device connector straight	
Figure Q.3 – PhL-P flat cable connector and terminal cover – body and connector	
Figure Q.4 – PhL-P flat cable connector and terminal cover – terminal cover	
Figure Q.5 – Type 18-PhL-P round cable connector body	
Figure Q.6 – Type 18-PhL-P round cable connector terminal cover	
Figure Q.7 – Type 18-PhL-P round cable alternate connector and body	
Figure Q.8 – Type 18-PhL-P round cable alternate connector terminal cover	
Figure R.1 – PhL-B cable cross section twisted drain	
Figure R.2 – PhL-B cable cross section non-twisted drain	
Figure R.3 – PhL-P flat cable cross section - with key	

Figure R.4 – PhL-P flat cable cross section - without key397Figure R.5 – PhL-P flat cable polarity marking397Figure R.6 – Round cable – preferred; cross section398Figure R.7 – Round cable – alternate; cross-section398

Table 1 – Data encoding rules	.60
Table 2 – Ph-STATUS indication truth table	.61
Table 3 – Jabber indications	.61
Table 4 – Parameter names and values for Ph-SET-VALUE request	.78
Table 5 – Parameter names for Ph-EVENT indication	.79
Table 6 – Summary of Ph-management services and primitives	. 80
Table 7 – Reset primitives and parameters	. 81
Table 8 – Values of PhM-Status for the Reset service	.81
Table 9 – Set value primitives and parameters	. 82
Table 10 – Mandatory PhE-variables	. 82
Table 11 – Permissible values of PhE-variables	.83
Table 12 – Values of PhM-Status for the set-value service	.83
Table 13 – Get value primitives and parameters	
Table 14 – Current values of PhE-variables	. 84
Table 15 – Values of PhM-Status for the get value service	. 84
Table 16 – Event primitive and parameters	. 84
Table 17 – New values of PhE-variables	.85
Table 18 – Parameter names and values for management	.85
Table 19 – PH-RESET	. 87
Table 20 – Ph-SET-VALUE	. 87
Table 21 – PhL variables	.88
Table 22 – Ph-GET-VALUE	. 89
Table 23 – Ph-Event	.90
Table 24 – PhL events	.90
Table 25 – Parameter names and values for Ph-SET-VALUE request	
Table 26 – Signals at DTE – DCE interface	.95
Table 27 – Signal levels for an exposed DTE – DCE interface	.96
Table 28 – MDS bus reset	106
Table 29 – Signals at the MIS-MDS interface	106
Table 30 – Manchester encoding rules	115
Table 31 – MDS timing characteristics	118
Table 32 – MDS data encoding rules	118
Table 33 – SL bit and TxSL signal assignment	125
Table 34 – SL bit and RxSL signal assignment	125
Table 35 – SL bit and TxSL signal assignment	126
Table 36 – SL bit and RxSL signal assignment	127
Table 37 – SL bit and TxSL signal assignment	127
Table 38 – SL bit and RxSL signal assignment	
Table 39 – Coding and decoding rules	
Table 40 – Decoding rules for the idle states	
Table 41 – Coding rules for the reset PhPDU	
Table 42 – Decoding rules of the reset PhPDU	
Table 43 – Manchester encoding rules	132

Table 44 – Minimum services at MDS – MAU interface	. 135
Table 45 – Signal levels for an exposed MDS – MAU interface	. 136
Table 46 – MDS-MAU interface definitions: 5 Mbit/s, voltage-mode, coaxial wire	. 137
Table 47 – MDS-MAU interface 5 Mbit/s, optical fiber medium	. 138
Table 48 – Services of the MDS-MAU interface	. 140
Table 49 – Minimum services at MAU interface	. 142
Table 50 – Signal levels for an exposed MAU interface	. 142
Table 51 – Bit-rate-dependent quantities of voltage-mode networks	. 143
Table 52 – MAU transmit level specification summary	. 146
Table 53 – MAU transmit timing specification summary for 31,25 kbit/s operation	. 146
Table 54 – MAU transmit timing specification summary for \geq 1 Mbit/s operation	. 147
Table 55 – MAU receive circuit specification summary	. 151
Table 56 – Network powered device characteristics	. 153
Table 57 – Network power supply requirements	. 153
Table 58 – Test cable attenuation limits	. 156
Table 59 – Recommended color coding of cables in North America	. 157
Table 60 – MAU transmit level specification summary	. 161
Table 61 – MAU transmit timing specification summary	. 161
Table 62 – MAU receive circuit specification summary	. 164
Table 63 – Network powered device characteristics	. 166
Table 64 – Network power supply requirements	. 166
Table 65 – Type 3 cable color specification	. 174
Table 66 – MAU transmit level specification summary	. 178
Table 67 – MAU transmit timing specification summary	. 178
Table 68 – Receive circuit specification summary	. 180
Table 69 – Network power supply requirements	. 182
Table 70 – Transmit level specification summary for current-mode MAU	. 188
Table 71 – Transmit timing specification summary for current-mode MAU	. 188
Table 72 – Receive circuit specification summary for current-mode MAU	. 190
Table 73 – Network power supply requirements	. 191
Table 74 – Bit-rate-dependent quantities of high-speed (≥1 Mbit/s) dual-fiber networks	. 194
Table 75 – Transmit level and spectral specification summary	. 196
Table 76 – Transmit timing specification summary	. 196
Table 77 – Receive circuit specification summary	. 197
Table 78 – Transmit and receive level and spectral specifications for an optical active	
star	
Table 79 – Timing characteristics of an optical active star	
Table 80 – Transmit level and spectral specification summary	. 202
Table 81 – Transmit and receive level and spectral specifications for an optical active star	204
Table 82 – Interfering frequencies for testing receiver performance	
Table 83 – Transmit control line definitions 5 Mbit/s, voltage-mode, coaxial wire	
Table 85 – Transmit control line definitions 5 Mbit/s, voltage-mode, coaxial wire Table 84 – Receiver data output definitions: 5 Mbit/s, voltage-mode, coaxial wire	
Table 85 – Receiver carrier output definitions: 5 Mbit/s, voltage-mode, coaxial wire	
. alle et interest earlier earlier earlier en minere, voltage mode, ooaxial wite	

Table 86 – Coaxial wire medium interface – transmit specifications	218
Table 87 – Coaxial wire medium interface – receive	219
Table 88 – Coaxial wire medium interface – general	220
Table 89 – 5 Mbit/s, voltage-mode, coaxial wire transformer electrical specifications	221
Table 90 – Coaxial spur cable specifications	225
Table 91 – Coaxial trunk cable specifications	225
Table 92 – Transmit control line definitions 5 Mbit/s, optical fiber medium	227
Table 93 – Fiber medium interface 5,0 Mbit/s, optical	227
Table 94 – Fiber signal specification 5 Mbit/s, optical medium, short range	228
Table 95 – Fiber signal specification 5 Mbit/s, optical medium, medium range	229
Table 96 – Fiber signal specification 5 Mbit/s, optical medium, long range	230
Table 97 – NAP requirements	232
Table 98 – Mixing devices from different categories	235
Table 99 – Input Impedances of bus interfaces and power supplies	238
Table 100 – Required CMRR	241
Table 101 – Network powered device characteristics for the 31,25 kbit/s voltage-mode MAU	241
Table 102 – Network power supply requirements for the 31,25 kbit/s voltage-mode	
MAU	
Table 103 – Electrical characteristics of fieldbus interfaces	
Table 104 – Electrical characteristics of power supplies	
Table 105 – Characteristics for non intrinsic safety	
Table 106 – Characteristics using repeaters	
Table 107 – Cable specifications	
Table 108 – Maximum cable length for the different transmission speeds Table 108 – Maximum cable length for the different transmission speeds	
Table 109 – Characteristics for intrinsic safety	
Table 110 – Cable specification (function- and safety-related)	
Table 111 – Maximum cable length for the different transmission speeds	
Table 112 – Electrical characteristics of the intrinsically safe interface	
Table 113 – Maximum safety values	
Table 114 – Characteristic features	
Table 115 – Characteristics of optical transmitters for multi-mode glass fiber	
Table 116 – Characteristics of optical transmitters for single-mode glass fiber	
Table 117 – Characteristics of optical transmitters for plastic fiber	
Table 118 – Characteristics of optical transmitters for 200/230 μm glass fiber	272
Table 119 – Characteristics of optical receivers for multi-mode glass fiber	273
Table 120 – Characteristics of optical receivers for single-mode glass fiber	273
Table 121 – Characteristics of optical receivers for plastic fiber	273
Table 122 – Characteristics of optical receivers for 200/230 μm glass fiber	274
Table 123 – Permissible signal distortion at the electrical input of the optical	074
transmitter	
Table 124 – Permissible signal distortion due to the optical transmitter Table 125 – Demissible signal distortion due to the optical transmitter	
Table 125 – Permissible signal distortion due to the optical receiver	276

Table 126 – Permissible signal influence due to internal electronic circuits of a coupling component	276
Table 127 – Maximum chaining of standard optical links without retiming	277
Table 128 – Services of the MDS-MAU interface, RS-485, Type 4	278
Table 129 – Services of the MDS-MAU interface, RS-232, Type 4	280
Table 130 – Bit rate dependent quantities twisted pair wire medium MAU	281
Table 131 – Incoming interface signals	282
Table 132 – Outgoing interface signals	283
Table 133 – Remote bus cable characteristics	284
Table 134 – Bit rate dependent quantities optical MAU	286
Table 135 – Remote bus fiber optic cable length	287
Table 136 – Encoding rules	287
Table 137 – Transmit level and spectral specification summary for an optical MAU	287
Table 138 – Optical MAU receive circuit specification summary	289
Table 139 – Specification of the fiber optic waveguide	289
Table 140 – Specification of the single fiber	290
Table 141 – Specification of the cable sheath and mechanical properties of the cable	290
Table 142 – Recommended further material properties of the cable	290
Table 143 – Specification of the fiber optic waveguide	
Table 144 – Specification of the single fiber	
Table 145 – Specification of the cable sheath and mechanical properties of the cable	
Table 146 – Specification of the standard test fiber for an optical MAU	
Table 147 – Transmission rate support	
Table 148 – Transmission data parameters	
Table 149 – Possible slave input signals	
Table 150 – Possible slave output signals	
Table 151 – Valid slave output signals	
Table 152 – Specifications of the clock adjustment times	
Table 153 – Optical signal delay in a slave	
Table 154 – Basic functions of the connection	
Table 155 – Pass-through topology limits	
Table 156 – T-branch topology limits	
Table 157 – Terminating resistor requirements	
Table 158 – Pass-through topology limits	
Table 159 – T-branch topology limits	
Table 160 – Terminating resistor requirements – flat cable	
Table 161 – Terminating resistor requirements – round cable	
Table 162 – 24 V Power supply specifications	
Table 163 – 24V Power consumption specifications	
Table A.1 – Internal connector dimensions	
Table A.2 – Contact assignments for the external connector for harsh industrial	
environments	321
Table A.3 – Contact assignments for the external connector for typical industrial	
environments	325

Table A.4 – Fixed (device) side connector dimensions	325
Table A.5 – Free (cable) side connector dimensions	326
Table A.6 – Connector dimensions	327
Table B.1 – Typical cable specifications	328
Table B.2 – Recommended maximum spur lengths versus number of communication elements	329
Table C.1 – Optical passive star specification summary: example	330
Table D.1 – Passive star topology	332
Table D.2 – Active star topology	333
Table E.1 – Alternate fibers for dual-fiber mode	335
Table E.2 – Alternate fibers for single-fiber mode	335
Table F.1 – Connector requirements	336
Table F.2 – NAP connector pin definition	338
Table H.1 – 5 Mbit/s, voltage-mode, coaxial wire receiver output definitions	351
Table H.2 – Coaxial wire medium toroid specification	354
Table I.1 – Contact assignments for the external connector for harsh industrial environments	356
Table I.2 – Contact designations	358
Table I.3 – Contact designations	359
Table I.4 – Contact designations	359
Table K.1 – Example of a link budget calculation for 62,5/125 μ m multi-mode glass fiber	370
Table K.2 – Example of a link budget calculation for 9/125 μm single mode glass fiber	371
Table K.3 – Example of a link budget calculation for 980/1 000 μ m multi-mode plastic fiber	371
Table K.4 – Example of a level budget calculation for 200/230 μm multi-mode glass	
fiber	372
Table M.1 – Pin assignment of the 9-position subminiature D connector	375
Table M.2 – Pin assignment of the terminal connector	376
Table M.3 – Type 8 fiber optic hybrid connector dimensions	
Table O.1 – Transmitter specifications	
Table O.2 – Receiver specifications	
Table O.3 – Cable specifications (example)	
Table O.4 – System data of the optical transmission line at 650 nm	
Table R.1 – PhL-B cable specifications	
Table R.2 – PhL-P flat cable specifications	
Table R.3 – PhL-P round cable specifications – preferred	
Table R.4 – PhL-P round cable specifications – alternate	398

INTERNATIONAL ELECTROTECHNICAL COMMISSION

INDUSTRIAL COMMUNICATION NETWORKS – FIELDBUS SPECIFICATIONS –

Part 2: Physical layer specification and service definition

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committee; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

International Standard IEC 61158-2 has been prepared by subcommittee 65C: Industrial networks, of IEC technical committee 65: Industrial-process measurement, control and automation.

This fifth edition cancels and replaces the fourth edition published in 2007. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- for Type 18, Table 157 reduced tolerance to 5%;
- for Type 18, in 32.5.3.1 removed minimum cable length;
- for Type 18, in 32.5.4. and R.2.2 cable reference removed;
- for Type 18, Table 160 and 161 terminating resistor value changed to 680 Ω.

The text of this standard is based on the following documents:

FDIS	Report on voting
65C/598/FDIS	65C/613/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with ISO/IEC Directives, Part 2.

NOTE Slight variances from the directives have been allowed by the IEC Central Office to provide continuity of subclause numbering with prior editions.

The list of all the parts of the IEC 61158 series, published under the general title *Industrial communication networks* — *Fieldbus specifications,* can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

0 Introduction

0.1 General

This part of IEC 61158 is one of a series produced to facilitate the interconnection of automation system components. It is related to other standards in the set as defined by the "three-layer" fieldbus reference model described in IEC/TR 61158-1.

0.2 Physical layer overview

The primary aim of this standard is to provide a set of rules for communication expressed in terms of the procedures to be carried out by peer Ph-entities at the time of communication.

The physical layer receives data units from the data-link Layer, encodes them, if necessary by adding communications framing information, and transmits the resulting physical signals to the transmission medium at one node. Signals are then received at one or more other node(s), decoded, if necessary by removing the communications framing information, before the data units are passed to the data-link Layer of the receiving device.

0.3 Document overview

This standard comprises physical layer specifications corresponding to many of the different DL-Layer protocol Types specified in IEC 61158-4-1 to IEC 61158-4-18.

NOTE 1 The protocol Type numbers used are consistent throughout the IEC 61158 series.

NOTE 2 Specifications for Types 1, 2, 3, 4, 8, 16 and 18 are included. Type 7 uses Type 1 specifications. The other Types do not use any of the specifications given in this standard.

NOTE 3 For ease of reference, Type numbers are given in clause names. This means that the specification given therein applies to this Type, but does not exclude its use for other Types.

NOTE 4 It is up to the user of this standard to select interoperating sets of provisions. Refer to the IEC 61784 series for standardized communication profiles based on the IEC 61158 series.

A general model of the physical layer is shown in Figure 1.

The common characteristics for all variants and types are as follows:

- digital data transmission;
- no separate clock transmission;
- either half-duplex communication (bi-directional but in only one direction at a time) or fullduplex communication.

Figure 1 – General model of physical layer

NOTE 5 The protocol types use a subset of the structure elements.

NOTE 6 Since Type 8 uses a more complex DIS than the other types, it uses the term MIS to differentiate.

0.4 Major physical layer variations specified in this standard

0.4.1 Type 1 media

0.4.1.1 Type 1: Wire media

For twisted-pair wire media, Type 1 specifies two modes of coupling and different signaling speeds as follows:

- a) voltage mode (parallel coupling), 150 Ω , data rates from 31,25 kbit/s to 25 Mbit/s;
- b) voltage mode (parallel coupling), 100 Ω , 31,25 kbit/s;
- c) current mode (serial coupling), 1,0 Mbit/s including two current options.

The voltage mode variations may be implemented with inductive coupling using transformers. This is not mandatory if the isolation requirements of this standard are met by other means.

The Type 1 twisted-pair (or untwisted-pair) wire medium physical layer provides the options:

- no power via the bus conductors; not intrinsically safe;
- power via the bus conductors; not intrinsically safe;
- no power via the bus conductors; intrinsically safe;
- power via the bus conductors; intrinsically safe.

0.4.1.2 Type 1: Optical media

The major variations of the Type 1 optic fiber media are as follows:

- dual fiber mode, data rates from 31,25 kbit/s to 25 Mbit/s;
- single fiber mode, 31,25 kbit/s.

0.4.1.3 Type 1: Radio media

The Type 1 radio medium specification provides a generalized FSK/PSK radio capability at arbitrary bit rates.

0.4.2 Type 2: Coaxial wire and optical media

Type 2 specifies the following variants:

- coaxial copper wire medium, 5 Mbit/s;
- optical fiber medium, 5 Mbit/s;
- network access port (NAP), a point-to-point temporary attachment mechanism that can be used for programming, configuration, diagnostics or other purposes;
- repeater machine sublayers (RM, RRM) and redundant physical layers.

0.4.3 Type 3: Twisted-pair wire and optical media

Type 3 specifies the following synchronous transmission:

- a) twisted-pair wire medium, 31,25 kbit/s, voltage mode (parallel coupling) with the options:
 - power via the bus conductors: not intrinsically safe;
 - power via the bus conductors: intrinsically safe;

and the following asynchronous transmission variants:

- b) twisted-pair wire medium, up to 12 Mbit/s, ANSI TIA/EIA-485-A;
- c) optical fiber medium, up to 12 Mbit/s.

0.4.4 Type 4: Wire medium

Type 4 specifies wire media with the following characteristics:

- RS-485 wire medium up to 76,8 kbit/s;
- RS-232 wire medium up to 230,4 kbit/s.

0.4.5 Type 8: Twisted-pair wire and optical media

The physical layer also allows transmitting data units that have been received through a medium access by the transmission medium directly through another medium access and its transmission protocol to another device.

Type 8 specifies the following variants:

- twisted-pair wire medium, up to 16 Mbit/s;
- optical fiber medium, up to 16 Mbit/s.

The general characteristics of these transmission media are as follows:

- full-duplex transmission;
- non-return-to-zero (NRZ) coding.

The wire media type provides the following options:

- no power supply via the bus cable, not intrinsically safe;
- power supply via the bus cable and on additional conductors, not intrinsically safe.

0.4.6 Type 12: Wire medium

Type 12 specifies wire media with the following characteristics:

- LVDS wire medium up 100 Mbit/s.

0.4.7 Type 16: optical media

Type 16 specifies a synchronous transmission using optical fiber medium, at 2 Mbit/s, 4 Mbit/s, 8 Mbit/s and 16 Mbit/s.

0.4.8 Type 18: Media

0.4.8.1 Type 18: Basic media

The Type 18-PhL-B specifies a balanced transmission signal over a shielded 3-core twisted cable. Communication data rates as high as 10 Mbit/s and transmission distances as great as 1,2 km are specified.

0.4.8.2 Type 18: Powered media

The Type 18-PhL-P specifies a balanced transmission signal over a 4-core unshielded cable in both flat and round configurations with conductors specified for communications signal and network-embedded power distribution. Communication data rates as high as 2,5 Mbit/s and transmission distances as great as 500 m are specified.

0.5 Patent declaration

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

Use of some of the associated protocol types is restricted by their intellectual-property-right holders. In all cases, the commitment to limited release of intellectual-property-rights made by the holders of those rights permits a particular data-link layer protocol type to be used with physical layer and application layer protocols in type combinations as specified explicitly in the IEC 61784 series. Use of the various protocol types in other combinations may require permission of their respective intellectual-property-right holders.

The International Electrotechnical Commission (IEC) draws attention to the fact that it is claimed that compliance with this document may involve the use of a patent concerning Type 2 given in subclauses 5.3, 9.4, 10.4, Clauses 18 through 20, Annex F through Annex H, as follows:

US 5,396,197 Network Node TAP

IEC takes no position concerning the evidence, validity and scope of this patent right.

The holder of this patent right has assured the IEC that he/she is willing to negotiate licences under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of the holder of this patent right is registered with IEC. Information may be obtained from:

Rockwell Automation, Inc. 1201 S. Second Street Milwaukee, WI 53204 USA Attention: Intellectual Property Dept.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights other than those identified above. IEC shall not be held responsible for identifying any or all such patent rights.

ISO (www.iso.org/patents) and IEC (http://www.iec.ch/tctools/patent_decl.htm) maintain online data bases of patents relevant to their standards. Users are encouraged to consult the data bases for the most up to date information concerning patents.

INDUSTRIAL COMMUNICATION NETWORKS – FIELDBUS SPECIFICATIONS –

Part 2: Physical layer specification and service definition

1 Scope

This part of IEC 61158 specifies the requirements for fieldbus component parts. It also specifies the media and network configuration requirements necessary to ensure agreed levels of

- a) data integrity before data-link layer error checking;
- b) interoperability between devices at the physical layer.

The fieldbus physical layer conforms to layer 1 of the OSI 7-layer model as defined by ISO 7498 with the exception that, for some types, frame delimiters are in the physical layer while for other types they are in the data-link layer.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-731, International Electrotechnical Vocabulary – Chapter 731: Optical fibre communication

IEC 60079-11, Explosive atmospheres – Part 11: Equipment protection by intrinsic safety "i"

IEC 60079-14:2002¹, Electrical apparatus for explosive gas atmospheres – Part 14: Electrical installations in hazardous areas (other than mines)

IEC 60079-25, *Electrical apparatus for explosive gas atmospheres – Part 25: Intrinsically safe systems*

IEC 60169-17:1980, Radio-frequency connectors – Part 17: R.F. coaxial connectors with inner diameter of outer conductor 6,5 mm (0,256 in) with screw coupling – Characteristic impedance 50 ohms (Type TNC) Amendment 1 (1993)

IEC 60189-1:2007, Low-frequency cables and wires with PVC insulation and PVC sheath – Part 1: General test and measuring methods

IEC 60255-22-1:1988², *Electrical relays – Part 22-1: Electrical disturbance tests for measuring relays and protection equipment – 1 MHz burst disturbance tests*

IEC 60364-4-41, Low-voltage electrical installations – Part 4-41: Protection for safety – Protection against electric shock

¹ There exists a new edition of IEC 60079-14 (2007). This will be considered in the next edition of IEC 61158-2.

² There exists a new edition of IEC 60255-22-1 (2007). This will be considered in the next edition of IEC 61158-2.

61158-2 © IEC:2010(E)

IEC 60364-5-54, Electrical installations of buildings – Part 5-54: Selection and erection of electrical equipment – Earthing arrangements, protective conductors and protective bonding conductors

IEC 60529, Degrees of protection provided by enclosures (IP Code)

IEC 60603-7-4, Connectors for electronic equipment – Part 7-4: Detail specification for 8-way, unshielded, free and fixed connectors, for data transmissions with frequencies up to 250 MHz

IEC 60760, Flat, quick-connect terminations

IEC 60793 (all parts), Optical fibres

IEC 60794-1-2:2003, Optical fibre cables – Part 1-2: Generic specification – Basic optical cable test procedures

IEC 60807-3, Rectangular connectors for frequencies below 3 MHz – Part 3: Detail specification for a range of connectors with trapezoidal shaped metal shells and round contacts – Removable crimp contact types with closed crimp barrels, rear insertion/rear extraction

IEC 60874-10-1, Connectors for optical fibres and cables – Part 10-1: Detail specification for fiber optic connector type BFOC/2,5 terminated to multimode fibre type A1

IEC 61000-4-2, *Electromagnetic compatibility (EMC) – Part 4-2: Testing and measurement techniques — Electrostatic discharge immunity test* (Basic EMC Publication)

IEC 61000-4-3, *Electromagnetic compatibility (EMC) – Part 4-3: Testing and measurement techniques — Radiated, radio-frequency, electromagnetic field immunity test* (Basic EMC Publication)

IEC 61000-4-4, *Electromagnetic compatibility (EMC) – Part 44: Testing and measurement techniques — Electrical fast transient/burst immunity test* (Basic EMC Publication)

IEC 61131-2, Programmable controllers – Part 2: Equipment requirements and tests

IEC 61156-1:2007, Multicore and symmetrical pair/quad cables for digital communications – Part 1: Generic specification

IEC 61158-4-2, Industrial communication network – Fieldbus specifications – Part 4-2: Datalink protocol specification – Type 2 elements

IEC 61158-4-3:2010³, Industrial communication network – Fieldbus specifications – Part 4-3: Data-link protocol specification – Type 3 elements

IEC 61169-8:2007, Radio-frequency connectors – Part 8: Sectional specification – RF coaxial connectors with inner diameter of outer conductor 6,5 mm (0,256 in) with bayonet lock – Characteristic impedance 50 Ω (type BNC)

IEC 61754-2, Fibre optic connector interfaces – Part 2: Type BFOC/2,5 connector family

IEC 61754-13, Fibre optic connector interfaces – Part 13: Type FC-PC connector

³ To be published.

IEC 61754-22, Fibre optic connector interfaces – Part 22: Type F-SMA connector family

ISO/IEC 7498 (all parts), Information technology – Open Systems Interconnection – Basic Reference Model: The Basic Model

ISO/IEC 8482, Information technology – Telecommunications and information exchange between systems – Twisted pair multipoint interconnections

ISO/IEC 8802-3, Information technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements – Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications

ISO/IEC 9314-1, Information processing systems – Fibre distributed data interface (FDDI) Part 1: Token Ring Physical Layer Protocol (PHY)

ISO/IEC 10731, Information technology – Open Systems Interconnection – Basic Reference Model – Conventions for the definition of OSI services

ANSI TIA/EIA-232-F, Interface Between Data Terminal Equipment and Data Circuit – Terminating Equipment Employing Serial Binary Data Interchange

ANSI TIA/EIA-422-B, Electrical Characteristics of Balanced Voltage Digital Interface Circuits

ANSI TIA/EIA-485-A, *Electrical Characteristics of Generators and Receivers for Use in Balanced Digital Multipoint Systems*

ANSI TIA/EIA-644-A, Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits