INTERNATIONAL STANDARD

Second edition 2006-12

Electric cables – Calculation of the current rating –

Part 1-1: Current rating equations (100 % load factor) and calculation of losses – General

© IEC 2006 Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия

For price, see current catalogue

_

V

CONTENTS

FOREWORD	 5
INTRODUCTION	 9

1	General1			
	1.1	Scope	11	
	1.2	Normative references	11	
	1.3	Symbols	13	
	1.4	Permissible current rating of cables	19	
2	Calculation of losses			
	2.1	AC resistance of conductor	25	
	2.2	Dielectric losses (applicable to a.c. cables only)	31	
	2.3	Loss factor for sheath and screen (applicable to power frequency a.c. cables only)	31	
	2.4	Loss factor for armour, reinforcement and steel pipes (applicable to power frequency a.c. cables only)	49	

Table 1 – Electrical resistivities and temperature coefficients of metals used	59
Table 2 – Skin and proximity effects – Experimental values for the coefficients k_s and k_p	61
Table 3 – Values of relative permittivity and loss factors for the insulation of high- voltage and medium-voltage cables at power frequency	63
Table 4 – Absorption coefficient of solar radiation for cable surfaces	65

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTRIC CABLES – CALCULATION OF THE CURRENT RATING –

Part 1-1: Current rating equations (100 % load factor) and calculation of losses – General

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60287-1-1 has been prepared by IEC technical committee 20: Electric cables.

This second edition cancels and replaces the first edition published in 1994, Amendment 1 (1995) and Amendment 2 (2001) The document 20/780/FDIS, circulated to the National Committees as Amendment 3, led to the publication of this new edition.

The text of this standard is based on the first edition, its Amendments 1 and 2, and the following documents:

FDIS	Report on voting
20/851/FDIS	20/867/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 60287 series, published under the general title: *Electric cables – Calculation of the current rating*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

INTRODUCTION

This Part 1-1 contains formulae for the quantities *R*, W_d , λ_1 and λ_2 .

It contains methods for calculating the permissible current rating of cables from details of the permissible temperature rise, conductor resistance, losses and thermal resistivities.

Formulae for the calculation of losses are also given.

The formulae in this standard contain quantities which vary with cable design and materials used. The values given in the tables are either internationally agreed, for example, electrical resistivities and resistance temperature coefficients, or are those which are generally accepted in practice, for example, thermal resistivities and permittivities of materials. In this latter category, some of the values given are not characteristic of the quality of new cables but are considered to apply to cables after a long period of use. In order that uniform and comparable results may be obtained, the current ratings should be calculated with the values given in this standard. However, where it is known with certainty that other values are more appropriate to the materials and design, then these may be used, and the corresponding current rating declared in addition, provided that the different values are quoted.

Quantities related to the operating conditions of cables are liable to vary considerably from one country to another. For instance, with respect to the ambient temperature and soil thermal resistivity, the values are governed in various countries by different considerations. Superficial comparisons between the values used in the various countries may lead to erroneous conclusions if they are not based on common criteria: for example, there may be different expectations for the life of the cables, and in some countries design is based on maximum values of soil thermal resistivity, whereas in others average values are used. Particularly, in the case of soil thermal resistivity, it is well known that this quantity is very sensitive to soil moisture content and may vary significantly with time, depending on the soil type, the topographical and meteorological conditions, and the cable loading.

The following procedure for choosing the values for the various parameters should, therefore, be adopted.

Numerical values should preferably be based on results of suitable measurements. Often such results are already included in national specifications as recommended values, so that the calculation may be based on these values generally used in the country in question; a survey of such values is given in Part 3-1.

A suggested list of the information required to select the appropriate type of cable is given in Part 3-1.

ELECTRIC CABLES – CALCULATION OF THE CURRENT RATING –

Part 1-1: Current rating equations (100 % load factor) and calculation of losses – General

1 General

1.1 Scope

This part of IEC 60287 is applicable to the conditions of steady-state operation of cables at all alternating voltages, and direct voltages up to 5 kV, buried directly in the ground, in ducts, troughs or in steel pipes, both with and without partial drying-out of the soil, as well as cables in air. The term "steady state" is intended to mean a continuous constant current (100 % load factor) just sufficient to produce asymptotically the maximum conductor temperature, the surrounding ambient conditions being assumed constant.

This part provides formulae for current ratings and losses.

The formulae given are essentially literal and designedly leave open the selection of certain important parameters. These may be divided into three groups:

- parameters related to construction of a cable (for example, thermal resistivity of insulating material) for which representative values have been selected based on published work;
- parameters related to the surrounding conditions, which may vary widely, the selection of which depends on the country in which the cables are used or are to be used;
- parameters which result from an agreement between manufacturer and user and which involve a margin for security of service (for example, maximum conductor temperature).

1.2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60027-3, Letter symbols to be used in electrical technology – Part 3: Logarithmic and related quantities, and their units

IEC 60028:1925, International standard of resistance for copper

IEC 60141 (all parts), Tests on oil-filled and gas-pressure cables and their accessories

IEC 60228, Conductors of insulated cables

IEC 60502-1, Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1,2 kV) up to 30 kV (Um = 36 kV) – Part 1: Cables for rated voltages of 1 kV (Um = 1,2 kV) and 3 kV (Um = 3,6 kV)

IEC 60502-2, Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1, 2 kV) up to 30 kV (Um = 36 kV) – Part 2: Cables for rated voltages from 6 kV (Um = 7, 2 kV) up to 30 kV (Um = 36 kV)

IEC 60889, Hard-drawn aluminium wire for overhead line conductors